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INTRODUCTION

Tri-axial accelerometers are becoming commonly
used devices that, when attached to animals, record
acceleration due to the individual’s movement and
orientation (Shepard et al. 2008, Sala et al. 2011,
Brown et al. 2013). Such acceleration data allows for
the remote sensing of animal behavior without human
presence. For example, accelerometers have been
employed to detect activity levels (Wilson et al. 2006,
Halsey et al. 2009, Enstipp et al. 2011), body orienta-

tion (Lyons et al. 2005, Ringgenberg et al. 2010),
movement through space (Rothwell et al. 2011), spe-
cific behavioral states (Gómez Laich et al. 2008,
Moreau et al. 2009, Whitney et al. 2010), and internal
states (Wilson et al. 2014) of a variety of animals.

Accelerometers may also prove to be powerful
tools for remotely monitoring elephant behavior. In
zoos, such data could be useful for long-term behav-
ioral research and real-time detection of elephant
distress that may require attention. For example, if
the need for increased exercise is indicated for a par-
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ABSTRACT: Accelerometers can be used to monitor animal behavior remotely, but validation is
required for each species. Previously, we showed that accelerometer data in collars could be used
to identify specific behaviors in African elephants Loxodonta africana, using complex analytical
methods. Here, we show that simple methods can also be used to identify elephant activity levels
and body orientation. Subjects were 6 African elephants: 3 at Disney’s Animal Kingdom®, Florida,
USA, and 3 in Samburu-Laikipia, Kenya. Each elephant wore a collar containing a tri-axial ac -
celerometer positioned on top of the neck. Simultaneous video recordings allowed validation of
accelerometer data against observed behavior. The standard deviation of the total acceleration
was shown to be a valid measure of dynamic acceleration, differentiating activity levels associated
with resting, feeding, bathing, walking, and rapid walking. The mean of the total acceleration was
shown to be a valid measure of static acceleration, and indicated upright and recumbent orienta-
tions. Simulations showed how accuracy was affected by sample rate, number of axes examined,
and analysis window lengths. Based on 34 continuous 24 h acceleration streams, the 6 elephants
exhibited an average of 2.5 h of overnight recumbence associated with minimal movement, indi-
cating sleep. Daily activity budgets exhibited periods of minimal activity (e.g. resting, 17%), low
activity (e.g. feeding, 68%), medium activity (e.g. walking, 13%), and high activity (e.g. rapid
walking, 2%). Kenyan elephants were slightly more active and exhibited less restful recumbence
compared to zoo elephants. Accelerometers in elephant collars can detect activity levels that are
associated with specific behaviors, and can detect body orientation as a proxy for sleep.
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ticular elephant, accelerometers could determine if
interventions to increase activity, such as enrichment
techniques, are effective (e.g. Soulsby 2012, Rothwell
et al. 2011). Accelerometers may also be used to de -
tect atypical behaviors that require immediate atten-
tion, such as limping (e.g. Pastell et al. 2009). 

Accelerometer research on zoo and safari park ele-
phants is on the increase. For example, Rothwell et
al. (2011) showed that accelerometers in anklets can
be used to count steps and infer walking distance in
African elephants, and Ren & Hutchinson (2008)
used accelerometers attached to the legs to investi-
gate gaits of walking Asian and African elephants. In
a multi-institutional study, Holdgate et al. (2016)
used accelerometers in anklets to measure recum-
bence in both Asian and African elephants. Finally,
Soulsby (2012) used accelerometers and GPS units in
collars on Asian elephants Elephas maximus to
measure activity budgets, activity levels associated
with specific behaviors, and the correlation between
activity level and walking distance. Our group previ-
ously attached accelerometers in collars to African
elephants at Disney’s Animal Kingdom®, showing
that common elephant behaviors (resting, feeding,
bathing, and walking) can be differentiated from one
another using dynamic acceleration and the perio-
dicity of movement (Soltis et al. 2012). We also
showed that elephants walk with a different posture
dependent on whether they are in a positive or nega-
tive emotional state (Wilson et al. 2014).

We could not find published research on acce lero -
meter use in wild elephants, but data from accelero -
meters would be very useful for long-term behavioral
research in free-ranging populations (e.g. Wall et al.
2014, O’Donoghue & Rutz 2016). For example, ac -
celerometers could be used to determine energy
expenditure during different behavioral states, such
as female estrous or male musth, or in different eco-
logical contexts, such as dry versus wet seasons.
Also, real-time analysis of accelerometer data could
detect when elephants are in distress. For example, a
limping gait or sudden falling (e.g. Bourke et al.
2007) may indicate instances of injury or attack by
humans, and electronic messages could be sent to
wildlife veterinarians or anti-poaching units (O’Dono -
ghue & Rutz 2016).

Collars are routinely used to house various sensors
in both wild and zoo contexts (see citations above),
and here, we extend our previous findings from
accelerometers embedded in elephant collars (Soltis
et al. 2012). Our scope extends validations of acce -
lerometer data to detect body orientation (upright
versus recumbent) in addition to overall activity lev-

els (Soltis et al. 2012), in wild African elephants, as
well as zoo-housed elephants (Soltis et al. 2012).

In terms of methodology, we expand on our previ-
ous work in 3 ways. First, we validate simple meth-
ods for analyzing accelerometer data. In our previ-
ous work, we used complex methods involving line
interpolation, line subtraction, and Fourier transfor-
mations. Simpler methods may prove useful, how-
ever, in particular when low-cost, real-time analysis
is re quired on-board elephant collars, or when users
lack access to appropriate software. Therefore, we
validated the mean of acceleration to measure body
orientation (upright versus recumbent) and the stan-
dard deviation of acceleration to measure activity
levels associated with a variety of elephant behav-
iors (resting, feeding, bathing, walking, and rapid
walking). Second, we examine the trade-off be -
tween data reduction and accuracy. Accelerometer
data can be abundant compared to other forms of
data (e.g. GPS), and therefore costly to analyze or
transfer wirelessly. Nevertheless, the appropriate
data must be recorded such that targeted behavior
is reliably detected. We used simulations to investi-
gate how accuracy is affected by the number of axes
examined, sample rate, and analysis window length,
so that researchers may use this information to de -
sign data collection and analyses protocols. Third,
we collected 24 h periods of continuous acce lero -
meter streams for both wild and zoo elephants. We
developed fully automated routines that computed
activity levels and body orientation from the acceler-
ation streams, showing how these factors could be
analyzed in real-time. In so doing, we provide pre-
liminary data on wild African elephant activity
budgets and recumbence and compare the re sults
to zoo-housed Disney  elephants. These results, com-
bined with those of Soltis et al. (2012), provide a
robust foundation for the study of African elephant
behavior using tri-axial accelerometers.

MATERIALS AND METHODS

Study subjects and data collection

We collected accelerometry data from 6 adult
female African elephants Loxodonta africana. Three
of the subjects were housed at Disney’s Animal King-
dom®, Florida, USA, in a 1.6 ha outdoor exhibit dur-
ing the day, and various indoor or outdoor enclosures
overnight (for details, see Soltis et al. 2012, Leighty et
al. 2009). Data were collected from June to December
2011, and April to September 2013. The outdoor ex -
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hibit contained a large pool in which multiple ele-
phants could submerge simultaneously, multiple
scratching surfaces, a mud wallow, and large rock
rings that allowed animals to move out of contact and
visual range of other animals and guests. Elephants
at Disney’s Animal Kingdom® have been trained in
operant conditioning to voluntarily wear collars
around their necks to which various data collecting
sensors have been attached, including audio-recorders
and GPS units (e.g. Leighty et al. 2008). In the pres-
ent study, tri-axial accelerometer loggers (X9-2mini,
Gulf Coast Data Concepts,) were attached to the col-
lars. These collars are described in detail by Leighty
et al. (2009), and the specific accelerometer attach-
ment is described by Soltis et al. (2012). Note that
Horback et al. (2012) showed that collars did not af -
fect elephant behavior in another zoo context. Ac -
celerometers were programmed to internally log
data at a 10 Hz sample rate on 3 axes. After record-
ings, collars were removed from elephants by keeper
staff, and raw accelerometer data were downloaded
from the loggers.

The additional 3 elephants were from the Samburu-
Laikipia region of northern Kenya, each of which was
part of an ongoing, long-term GPS tracking study of
individually identified elephants (Wittemyer et al.
2013). Data were collected in February 2012 and
from January to February 2013. In addition to GPS
units, the elephants’ collars were outfitted with tri-
axial accelerometers (Savannah Tracking), and pro-
grammed to internally log accelerometer data at a
10 Hz sample rate on 3 axes. A custom-made commu-
nication unit (Savannah Tracking) was used to wire-
lessly program the accelerometer and download the
raw data. In both Disney and Samburu elephants,
accelerometers were placed in collars on top of the
elephant’s neck, with the axis orientations as de -
picted in Fig. 1.

To validate patterns of accelerometer data against
actual behavior, elephants were videotaped in both
locations to capture a representative suite of behav-
iors: resting, feeding, bathing, walking, and rapid
walking; elephants were also videotaped while
recumbent in both locations. At Disney, elephants
were videotaped in their outdoor exhibit to record
the suite of behaviors, and overnight in their night
holding areas to record recumbence. In Samburu-
Laikipia, elephants were located using a real-time
GPS server (Wall et al. 2014), and videotaped during
daylight hours. Samburu-Laikipia elephants could
not safely be followed at night, but recumbence was
videotaped in 1 elephant while anesthetized for a
collaring procedure. The entire suite of behaviors

was observed and videotaped in both Disney and
Samburu-Laikipia elephants — except for rapid wal -
king, which was not observed in Disney elephants
but was observed on 2 occasions in Samburu-
Laikipia elephants.

Validation of simple algorithms to measure
dynamic and static acceleration

The total acceleration data stream (Fig. 2) is tradi-
tionally divided into 2 components: dynamic and
static acceleration (Shepard et al. 2008). Dynamic
acceleration refers to g-forces due to movement of
the device, represented by the fluctuation of g-force
values. Static acceleration refers to g-force values
due to the orientation of the device with respect the
gravitational field, represented by the central ten-
dency of g-force values (Fig. 2).

The sample standard deviation (SD) of the total
acceleration may be a simple algorithm for quantify-
ing dynamic acceleration. To validate the use of the
SD to measure dynamic acceleration in African ele-
phants, we compared the results of this method to our
previously used method, line interpolation and sub-
traction (Soltis et al. 2012; see also Wilson et al. 2006).
In this method, the total acceleration data series is
smoothed by taking the running mean over a 2 s win-
dow, giving the static acceleration component of the
total acceleration. Dynamic acceleration is then
obtained by subtracting static acceleration values
from total acceleration values, which results in values
fluctuating around zero. Taking the mean of the
absolute deviations from zero quantifies dynamic
acceleration (Soltis et al. 2012).
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Fig. 1. Accelerometer orientation on African elephants Loxo -
donta africana. Left panel: adult female elephant in Sam-
buru National Reserve, Kenya, wearing a collar with the
accelerometer housing positioned on top of the neck (black
arrow); right panel: orientation of the 3 axes in the 

accelerometer
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To validate the sample SD method, we obtained
three 20 s bouts of 4 distinct behavioral states (rest-
ing, feeding, bathing, and walking) from the 3 ele-
phants at Disney’s Animal Kingdom®, for a total of
9 bouts for each behavioral state (from Soltis et al.
2012). The 2 methods (line interpolation and SD) were
computed for each axis of these data se quen ces. For
each sequence, dynamic acceleration values were
summed across the 3 axes, yielding overall dynamic
body acceleration (ODBA; Wilson et al. 2006, Qasem
et al. 2012). In this way, we were able to directly com-
pare the 2 methods used to compute ODBA.

Additionally, we examined how ODBA values re -
lated to common behaviors in African elephants. In
this analysis, we examined paired accelerometer and
behavioral data from all 6 females. For each female,
we obtained two 20 s bouts of resting, feeding,
bathing, and walking, for a total of 12 bouts for each
behavior. In addition, we recorded 1 instance of rapid
walking in 2 of the Samburu-Laikipia females. By
computing the ODBA across representative in -
stances of each behavior, we are able to demarcate

the range of ODBA values associated with resting,
feeding, bathing, walking, and rapid walking.

The second component of total acceleration is static
acceleration. Examination of Figs. 1 & 2 shows how
static acceleration can be used to detect body orien-
tation. When an elephant is in an upright position,
the mean value of the sway axis should be around 0
(i.e. parallel to the gravitational field), and the mean
value of the heave axis should be around −1 (perpen-
dicular to the gravitational field). As the elephant ori-
ents to the recumbent position, the heave axis will
move away from −1 and towards 0, and the sway axis
will move away from 0 towards −1 or +1, depending
on which side the elephant lies down.

The mean of the total acceleration is a simple algo-
rithm for quantifying static acceleration. Based on
preliminary observation of videotaped elephant
recumbence and visual inspection of simultaneous
accelerometer streams, we used the following rule to
define a threshold for recumbence: If the absolute
value of the mean of the x-axis (sway) was >0.5 g, or
the value of the mean of the z-axis (heave) was
>−0.75 g, then the elephant was considered recum-
bent. In short:

IF mean |x| > 0.5 OR mean z > −0.75, 
THEN recumbent

To validate this formula, we examined 10 bouts
of video-recorded overnight recumbence from 2 Dis-
ney elephants. Additionally, we obtained 1 video-
recorded bout of elephant recumbence from a single
wild elephant under anesthesia during a collaring
procedure. We analyzed the relevant total acce -
lerometer streams surrounding each known bout of
recumbence by dividing the stream into 60 s inter-
vals and taking the mean. Every 5 min, the grand
mean of the 60 s intervals was taken. By comparing
automated detection of recumbence to visual obser-
vation, we were able to validate the automated rou-
tine for recumbence.

Data reduction simulations

We conducted simulations to determine how accu-
racy is affected by sample rate, number of axes exam-
ined, and analysis window lengths. To examine the
effect of sample rate on dynamic acceleration, we ob-
tained twenty 5 min accelerometer data sequences
from 1 Disney and 1 Samburu-Laikipia elephant, for a
total of forty 5 min sequences. We analyzed the x-axis
(sway) and the z-axis (heave), as these 2 axes can be
used to measure both dynamic acceleration and static
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Fig. 2. Total acceleration data for an African elephant Loxo -
donta africana at Samburu-Laikipia during anesthesia and
recovery, showing the x- (sway), y- (surge), and z- (heave)
axes. Static acceleration: while recumbent, the accelerome-
ter is tilted on its side and the mean of the z-axis tends
towards 0 while the mean of the x-axis tends towards −1
(reflecting the force of gravity). While upright, the means of
the x- and z-axes reverse direction (see Fig. 1). Dynamic
acceleration: while the elephant is still (and recumbent),
there is little fluctuation around the mean in any axis. While
the elephant is active (and upright), there is greater fluctua-

tion around the mean on every axis
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acceleration related to lateral recumbence. For each
of the 40 sequences of total acceleration data, we cal-
culated the SD of the original file (10 Hz), and then
down-sampled the file to 5, 2.5, 1, 0.5, 0.2, 0.1, 0.05,
and 0.025 Hz. To down-sample from 10 to 5 Hz, every
other line was selected, and so on for each sample
rate. Dynamic acceleration was again calculated for
each of these decimated files. In this way, the relation-
ship between sample rate and deviations from actual
dynamic acceleration could be observed.

To measure the effect of analysis window length on
dynamic acceleration, we obtained thirty-four 5 min
acceleration streams and obtained the overall body
dynamic acceleration using 2 different analysis win-
dow lengths. In the first analysis, the window length
was 10 s, such that the SD was calculated across 10 s
sequences for the 5 min data stream. Then the grand
mean was calculated for each axis, and the means for
each axis summed for ODBA. In the second analysis,
the window length was 5 min (the length of each
acceleration stream), so that the SD was calculated
for the 5 min stream as a whole, and the axes
summed for ODBA. In this way, ODBA could be com-
pared using a relatively short (10 s) and relatively
long (5 min) analysis window length.

Rules for determining elephant recumbence are
threshold-based, such that an elephant is either
upright or recumbent. Therefore, 2 types of error are
possible. False negatives occur when a bout of
recumbence is missed. This error is dependent solely
on the length of the analysis window (5 min for data
in this paper), such that bouts of recumbence shorter
than the analysis window may be missed, but bouts
of recumbence longer than the window will be cap-
tured. Here, we focus on false positives, which occur
when an upright posture is mistaken for recumbence.

False positives are most likely to occur when high
acceleration values are combined with low sample
rates. To understand why, consider the following
example. If an elephant is upright, the central ten-
dency of the z-axis (heave) will be −1, reflecting the
force of gravity. In high activity behaviors, however,
the fluctuations around the mean of −1 could be quite
large. Sampling error could result in selection of ex -
treme values that satisfy the recumbence rule for the
z-axis (z > −0.75), resulting in an instance of false
recumbence. To examine this phenomenon, we ob -
tained two 5 min bouts of high activity behavior (2
bouts of rapid walking) from 2 Samburu-Laikipia ele-
phants, and calculated the mean for the x- (sway) and
z- (heave) axes. Then, we down-sampled each file to
a new sample rate (1, 0.5, 0.1, 0.05, 0.025, and 0.016
Hz). Data streams were down-sampled from a 10 to a

1 Hz sample rate by selecting every 10th value, and so
on for each sample rate. For each sample rate, the
mean of the 5 min file was calculated 10 times by ran-
domly choosing starting points in the sequence. In
this way, we determined what sample rates yield
false recumbence due to sampling error.

Automated routines for 24 h sequences of
accelerometer data

In addition to simultaneous collection of behavioral
and accelerometer data used for validation, we also
recorded full 24 h sequences of accelerometer data
(without simultaneous video collection) from all 6
elephants. We recorded 34 full days from the 6
females (Disney: 7, 6, and 6 d; Samburu-Laikipia: 8,
4, and 3 d). To automate analysis of the 24 h ac -
celerometer streams, we developed simple computer
programs (QBASIC; available upon request) that
separated dynamic and static acceleration from total
acceleration, and computed 5 min summaries across
the 24 h time period.

To compute dynamic acceleration, the sample SD of
the total acceleration was obtained in sequential 10 s
windows for each axis. The 10 s window was chosen
based on preliminary observations of paired accelerom-
eter data and behavior, which showed that the 10 s
window matched results from the line interpolation
and subtraction method. Every 5 min, the mean of the
10 s SD was calculated, and the 3 axes were summed
to determine ODBA for that 5 min period.

To compute static acceleration (body orientation),
the mean of the total acceleration was obtained
in sequential 60 s windows for the x- (sway) and
z-(heave) axes. A 60 s window was chosen (rather
than a 10 s window as for dynamic acceleration)
because short bouts of recumbence were considered
unlikely. Every 5 min, the grand mean of the 60 s
means was calculated. Elephants were considered
recumbent if the grand mean for the 5 min period
 satisfied the previously validated rule (IF |x | > 0.5 OR
z > −0.75, THEN recumbent).

RESULTS

Validation of algorithms

Activity level (dynamic acceleration)

The sample SD of the total acceleration is a simple
and accurate method for computing dynamic acceler-
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ation. Fig. 3 shows that the simple SD method yields
results nearly identical to those of the more complex
line interpolation and subtraction method (see ‘Mate-
rials and methods’), both in terms of overall correlation
and absolute values. However, for most behaviors the
SD method yielded slightly higher values than the in-
terpolation and subtraction method. Fig. 4 shows the
range of ODBA values for 4 behavioral states (resting,
feeding, bathing, walking). Based on these data,
ODBA values can be divided into the following cate-
gories: minimal activity (e.g. resting): 0 to 0.05 g; low
activity (e.g. feeding): 0.05 to 0.15 g; and medium ac-
tivity (e.g. bathing, walking): 0.15 to 0.3 g.

More energetic behaviors were rare. However, we
were able to validate 2 bouts of rapid walking in Sam-
buru-Laikipia elephants. The first resulted in ODBA
values of 1.1 g, about 4 times the value of normal
walking most commonly observed (Fig. 4); the second
bout resulted in ODBA values of 2.8 g, over 10 times
the value of typical walking. Thus, we added a final
category: high activity (e.g. rapid walking): >0.3 g.

Recumbence (static acceleration)

The mean of the total acceleration can be used to
obtain static acceleration. Fig. 5 shows 11 bouts of

recumbence documented with video and measured
using both recumbence rules (the x-axis rule and the
z-axis rule; see ‘Materials and methods’). Both recum-
bence rules yielded nearly identical re sults to the
visual observation. The average difference between
the x-axis rule and visual observation was 4.2%

(range: 0 to 9.5%), and the average differ-
ence between the z-axis rule and visual
observation was 4.1% (range: 0 to 9.5%).

Simulations to determine minimal 
data required for activity level and

recumbence

Activity level (dynamic acceleration)

Low sample rates increase error in dy -
namic acceleration measurement. Fig. 6
shows that the spread of dynamic acceler-
ation values increases with decreasing
sample rate due to sampling error. For low
activity levels, middle range sample rates
(e.g. 1 to 0.5 Hz) produce dynamic acceler-
ation values similar to the original 10 Hz
sample rate values. For medium activity
levels, the same is true for the z-axis, but
the x-axis starts to deviate from the 10 Hz
sample rate at 1 Hz. In the extremes
(<0.1 Hz), however, spreads deviate greatly
from the original values for both axes at
both acceleration levels, indicating the
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potential for erroneous measurement of dynamic
acceleration at very low sample rates.

Analysis window lengths of 10 s and 5 min yielded
similar ODBA values (Fig. 7), indicating that window
lengths up to 5 min can be accurate. However, devi-
ations were more common as ODBA increased.

Recumbence (static acceleration)

False recumbence can occur when high acceleration
values are combined with low sample rates (see ‘Ma-
terials and methods’). For common behaviors (resting,
feeding, bathing, walking), acceleration values are al-
most always too low to reach the thresholds for re-
cumbence (|x| > 0.5 g, and z > −0.75 g). For the highest
acceleration behavior, walking (n = 9 bouts; Fig. 3),
absolute maximums of the total acceleration streams
on the x-axis (sway) never exceeded 0.5 g, and
 maxi mums of the total acceleration streams on the z-
axis only ex ceeded −0.75 g in 0.2% of cases. There-
fore, only very high-acceleration behaviors are likely
to result in false positives.

Fig. 8 shows that very low sample rates result in
false detection of re cumbence for very high accelera-
tion behaviors (rapid walking). For the x-axis, false

recumbence does not oc cur until very low
sample rates (0.016 Hz) for the first in -
stance of rapid walking, but for the sec-
ond, more intense instance, false recum-
bence began at sample rates of 0.1 Hz. For
the z-axis, false recumbence was more
common, with false positives be ginning at
0.1 Hz for the first instance of rapid walk-
ing, and at 1 Hz for the se cond instance.

Activity level and recumbence of
 elephants over 24 h time periods

We used an automated routine to ana-
lyze 24 h sequences of behavior in terms
of dynamic and static acceleration. Fig. 9
shows the daily activity level for 1 Disney
and 1 Samburu-Laikipia elephant; Table 1
shows summary data for 34 d of data
across all 6 elephants. To use recumbence
as a proxy for sleep, only values associated
with minimal to no activity (ODBA <
0.05 g), were considered ‘restful recum-
bence’ in Table 1. There were only a few
instances of very high dynamic accelera-
tion values associated with re cumbence (1
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individual at Disney and 1 in Samburu-Laikipia), and
this may have been associated with active recumbent
behavior such as wallowing in the mud.

DISCUSSION

Methods for measuring dynamic 
and static acceleration

Our results show that for adult female African
elephants, the sample SD of the total acceleration
can be used as a measure of dynamic acceleration
(ac tivity level), and that the mean of the total accel-
eration can be used as a measure of static accelera-
tion (body orientation). The results apply when ac -
cel ero meters are placed in collars on top of the
elephant’s neck, an attachment technique that has
proved successful in both wild and zoo African ele-
phants (see ‘Introduction’). While these methods
may also be valid in male African elephants, non-
adult African elephants, and Asian elephants, these
findings may not extend to other large terrestrial

mammals, and so independent vali-
dations should be made for non-
 elephant species.

The value of these simple methods is
twofold. First, results can be directly
comparable across research groups
whether or not they use the SD method
or the line interpolation and subtrac-
tion method. Second, the simple algo-
rithms are computationally inexpen-
sive, and thus will be more useful than
complex methods for many applica-
tions, such as real-time, on-board ana -
lysis of data from elephant collars.

Data reduction: dynamic acceleration

In many applications, battery life is a
constraining factor when data is wire-
lessly transferred from collars over the
long term (Wall et al. 2014). Therefore,
it may be necessary to limit the amount
of accelerometer data that is analyzed
and/or transmitted from elephant col-
lars. However, there is a trade-off be -
tween data reduction and accuracy.
For dynamic acceleration, our simula-
tions showed that large de viations
from actual values only oc curred at
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very low sample rates (usually <0.5 Hz; Fig. 6). Our
simulation also showed that analysis window lengths
of 10 s and 5 min yielded similar results (Fig. 7), but
that error was more likely with higher ODBA values
when using the 5 min window. These results suggest
that a sample rate of 1 Hz or higher and an analysis

window length of no longer than 5 min
should be sufficient to measure dy -
namic acceleration in adult female
African elephants.

The most common measure of dy -
namic acceleration is ODBA, which
includes accelerations from all 3 axes
in its computation (Qasem et al. 2012).
However, one could reduce the num-
ber of axes measured as a proxy for
ODBA (see Gleiss et al. 2010). For
example, the x-axis (sway) contri bu -
ted 38.46% to ODBA, on average,
based on the summary data from the 6
African elephants studied in this
report (Table 1). Thus, ODBA could be
estimated by multiplying the x-axis
dynamic acceleration value by the
appropriate factor (2.60). However, to
calculate ODBA for the most accurate
comparison to other studies, data
would need to be collected from all 3
axes.

Data reduction: static acceleration

When measuring recumbence, false negatives
(missing recumbence) are a function of the analysis
window length, such that bouts of recumbence sub-
stantially shorter than the analysis window will be
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Behavior Disney (n = 3) Samburu (n = 3) Total (n = 6)

Restful recumbence (per 24 h)
Number of recumbent bouts 3.2 ± .8 1.7 ± 1.0 2.5 ± 1.1
Mean bout length (min) 56 ± 6 72 ± 3 64 ± 10
Minimum bout length (min) 17 ± 3 27 ± 8 22 ± 8
Maximum bout length (min) 115 ± 31 143 ± 36 129 ± 34
Mean total recumbence (min) 181 ± 44 127 ± 67 154 ± 59
Dynamic acceleration (g) 0.022 ± 0.001 0.037 ± 0.003 0.030 ± 0.009

Activity level (per 24 h)
% Minimal movement (e.g. resting) 23.1 ± 9.4 11.3 ± 3.1 17.2 ± 9.0
% Low activity (e.g. feeding) 65.7 ± 6.6 70.4 ± 8.5 68.0 ± 7.3
% Medium activity (e.g. bathing, walking) 10.3 ± 7.9 16.2 ± 8.0 13.2 ± 7.8
% High activity (e.g. rapid walking) 1.0 ± 0.9 2.2 ± 2.3 1.6 ± 1.7
x-axis mean dynamic acceleration (g)a 0.036 ± 0.008 0.045 ± 0.006 0.040 ± 0.008
y-axis mean dynamic acceleration (g)a 0.033 ± 0.007 0.050 ± 0.008 0.042 ± 0.011
z-axis mean dynamic acceleration (g)a 0.018 ± 0.004 0.026 ± 0.006 0.022 ± 0.006
ODBA (g)a 0.087 ± 0.019 0.121 ± 0.021 0.104 ± 0.026

aAverage of 5 min summaries across 24 h time periods

Table 1. Descriptive statistics (mean ± SD) for restful recumbence and activity levels in adult female African elephants Loxo -
donta africana across 24 h periods. ODBA: overall dynamic body acceleration; Disney: elephants from Disney’s Animal King-

dom, Florida, USA; Samburu: elephants from the Samburu-Laikipia region, Kenya
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missed. In our data, we used a 60 s analysis window,
and then averaged the 60 s windows every 5 min, for
an effective analysis window of 5 min. The data show
that bouts of restful recumbence at night (presumed
sleeping) were never shorter than 10 min (Table 1).
Therefore, analysis windows of 5 to 10 min should be
sufficient to avoid false negatives for bouts of restful
recumbence, but may miss short bouts of non-restful
recumbence such as mud-wallowing.

When measuring recumbence, false positives (mis-
taken recumbence) occur when low sample rates are
combined with high dynamic acceleration values
(see ‘Materials and methods’). Most behaviors (rest-
ing, feeding, bathing, walking) did not exhibit high
enough dynamic acceleration values to produce false
recumbence. Even in very high acceleration behav-
iors (rapid walking), false positives did not occur in
the x-axis (sway) until sample rates were <0.5 Hz.
Our simulations showed that the z-axis (heave) was
more susceptible to false recumbence. These consid-
erations suggest that a 1 Hz sample rate (or higher)
on the x-axis axis would be sufficient for measuring
recumbence in African elephants.

Most accelerometer-based studies on elephants
have used comparatively high sample rates, so these
interpretations cannot be corroborated by most other
research. However, Holdgate (2016) used a 60 s inter-
val (0.016 Hz sample rate) to measure recumbence in
African and Asian elephants. In that study, the ac-
celerometers were placed in anklets and re cumbence
was analyzed using the heave axis. Even with the low
sample rate, the method was successfully validated by
comparing the accelerometer-based algorithm to vi-
sual observation of recumbence. However, our simu-
lations showed that the same sample rate can result in
false positives during rapid walking (Fig. 7). These in-
stances of rapid walking resulted in very high dynamic
acceleration values. The second instance of rapid walk-
ing, for example, exhibited absolute values as high as
±4.0 g in the total acceleration data stream. These
high-acceleration behaviors were also exceedingly
rare (observed only twice, in Samburu-Laikipia ele-
phants). Thus, the 0.016 Hz sample rate used in Hold -
gate (2016) is probably sufficient for a wide range of
elephant behaviors, but could result in rare instances
of false recumbence when elephants are engaged in
behaviors that produce very high g-force accelerations.

Measuring specific behavioral states

The simple algorithms used in these analyses are
sufficient for measuring dynamic and static acceler-

ation, but they will not by themselves differentiate a
wide variety of specific behaviors. For example, in
our previous study (Soltis et al. 2012) we were able
to differentiate feeding, bathing, walking, and
swaying behaviors from each other with an average
accuracy of 88%. To accomplish that level of accu-
racy, however, we used measures of periodicity in
addition to traditional measures of dynamic acceler-
ation. Fourier transformations were used to measure
periodicity of the total acceleration data streams and
helped separate behaviors with regular, periodic
movement (walking and swaying) from behaviors
that lacked such periodicity (bathing and feeding).
Dynamic ac celeration helped separate lower from
higher acceleration behaviors. So far, we are not
aware of a simple proxy for measuring periodicity
that does not involve Fourier transformations. In
addition, we differentiated behaviors that are rela-
tively long-lasting: Resting, feeding, bathing, and
walking are behaviors that occur in long bouts that
can be described as behavioral ‘states.’ Other be -
haviors that are short-lived, such as charging, head-
up stances, and head-shaking, would have to be
analyzed for signature acceleration patterns on
much shorter time scales. Further research along
these lines may prove fruitful for remotely monitor-
ing very specific behaviors of elephants with ac -
celerometers.

Elephant activity budgets and sleep

The activity budgets and restful recumbence
bouts for wild and zoo elephants presented in Table
1 may be used to generate hypotheses for future
testing. For example, both wild and zoo elephants
spent the majority of their time (75 and 65%, respec-
tively) engaged in low acceleration behaviors (such
as those generated by feeding from the ground). It
is known that wild elephants avoid energetically
expensive behaviors, such as costly mountaineering
(Wall et al. 2006). Furthermore, energetically expen-
sive behavior such as long-distance walking is often
associated with scarce and widely scattered re -
sources such as water (reviewed in Leighty et al.
2009). Nevertheless, Samburu elephants experi-
enced higher average acceleration (0.12 g) com-
pared to zoo elephants (0.09 g; Table 1), perhaps
due to differences in distance travelled to acquire
resources. Accelerometers in collars could be used
in the future for studying elephant energetics that
could expand on our results, which were limited to 6
adult female African elephants.
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Table 1 also provides descriptive statistics on ele-
phant restful recumbence, which may be used as a
proxy for sleep. Our data show that lying down was
associated with minimal movement (Fig. 9), suggest-
ing that this proxy may be valid, but further work
would be required to definitively illustrate how rest-
ful recumbence equates to physiological sleep. Our
data also show that Samburu-Laikipia elephants
spent an average of about 2 h night−1 in restful re -
cumbence, and that zoo elephants spent about 3 h
night−1, perhaps because zoo elephants require less
vigilance due to the lack of interspecific conflict, for
example with humans or lions. The amount of recum-
bence observed in this study (2.5 h on average), con-
forms to other studies. For example, Holdgate et al.
(2016) investigated 72 adult female African ele-
phants across 40 North American zoos, and found an
average of 2.1 h of recumbence per night. For wild
African elephants, Wyatt & Eltringham (1974) showed
that adult female elephants (n = 4) were recumbent
for 1 to 2 h night−1. Accelerometers may be used to
further study variation in African elephant sleeping
behavior (e.g. seasonality, zoo vs. wild). Additionally,
unusually long recumbence bouts could be triggers
for electronic alarms that warn authorities of possible
mortality.
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