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Summary

In many animal systems agonistic interactions may be rare or not overt, particularly where
such interactions are costly or of high risk as is common for large mammals. We present a
technique developed specifically for resolving an optimized dominance order of individuals
in systems with transitive (i.e. linear) dominance relationships, but where not all relation-
ships are known. Our method augments the widely used I&SI method (de Vries, 1998) with
an interpolation function for resolving the relative ranks of individuals with unknown rela-
tionships. Our method offers several advantages over other dominance methods by enabling
the incorporation of any proportion of unknown relationships, resolving a unique solution to
any dominance matrix, and calculating cardinal dominance strengths for each individual. As
such, this method enables novel insight into difficult to study behavioural systems.
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Introduction

Dominance relationships are an important construct of social interactions,
offering insight into behavioural and fitness related differences among in-
dividuals (Krebs & Davies, 1987). Differentiation in fecundity and survival
rates in relation to social rank have been demonstrated in a variety of species
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Figure 1-A. A sample interaction matrix with a 5% chance of circularity randomly imposed
upon each dyad. The proportion of wins by an individual is denoted by the number between
0 and 1 in the individual’s row and correspondingly the proportion of losses is denoted by
the number between 0 and 1 in the individual’s column. Initially this 20 × 20 matrix had 9
inconsistencies (I ) with the sum of inconsistencies (SI) equalling 47, but the relative ranks of

individuals N and M were switched resulting in I = 8 and SI = 48.

(reindeer: Holand et al., 2004, clown anemonefish: Mitchell, 2005, rab-
bits: von Holst et al., 2002, mountain goats: Côté & Festa-Bianchet, 2001,
black-capped chickadees: Otter et al., 1998, spotted hyaena: Holekamp et
al., 1996). Dominance structure is also a key factor influencing the spatial
properties of animal populations, such as partitioning of resources through
differentiation in home range size and movement (Boydston et al., 2003; Say
& Pontier, 2004; Hansen & Closs, 2005). Social rank can even impact the
health of individuals (Sapolsky, 2005). Thus the quantification of dominance
interactions is an important aspect of behavioural ecology and the develop-
ment of quantitative methods to resolve dominance relations has been the
focus of numerous studies (as reviewed in de Vries, 1998).

Standard methods for deriving the dominance hierarchy of interacting in-
dividuals rely on the scoring of pair-wise competitive interactions (Boyd &
Silk, 1983; Martin & Bateson, 1993). The results of these interactions, wins
or losses, are arranged in a dyadic interaction matrix where the ijth element
represents the observed dominance relationship of i to j (Figure 1-A). In
a discrete formulation, this element is a 1-0 win-lose metric. In a continu-
ous formulation, it may take on any value between 0 and 1 and represent the
probability of dominance (number of wins/number of total contests per pair).
Conventions for resolving dominance ordering from dyadic interaction ma-
trices can be broadly grouped into two categories (Albers & de Vries, 2001;
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Figure 1-B. Unknown relationships are depicted as empty elements in an interaction ma-
trix. In order to test our method, 60% of elements from the complete matrix were randomly
removed and the results of our analysis compared with the known rank order (note the four
inconsistencies (L, A), (K, D), (M, I) and (O, J) that were randomly eliminated in the data

set).

Gammell et al., 2003): optimisation methods generally resolve the rank or-
der of individuals by solving for the minimum number of inconsistencies or
some other numerical criterion solved for the dominance matrix as a whole
(Crow, 1990; de Vries & Appleby, 2000) and strength methods that derive
a cardinal rank measure for an individual’s overall position in the hierarchy
(Clutton-Brock et al., 1979; David, 1987). Optimisation methods generally
resolve the rank order of individuals by solving for the minimum number of
circular dominance interactions (i.e., interactions of the form A dominates B
who dominates C who dominates A). These methods result in ordinal ranks
requiring non-parametric methods of analysis. Strength methods use the dif-
ference between the sum of wins and the sum of losses as a measure of an
individual’s rank, providing a quantitative numerical dominance value that
offers insight into the differences in relative dominance strengths of indi-
viduals. Such dominance values can be employed in parametric analyses,
but may offer sub-optimal ordinal rankings in the presence of circular inter-
actions. Neither of these rank methods appear to be generally accepted (de
Vries & Appleby, 2000; Langbein & Puppe, 2004), and both methods are
challenged by sparse data sets that do not contain information on the rela-
tionships among all dyads.

Agonistic interactions may be rare, subtle, or cryptic despite the impor-
tance of dominance hierarchies in a system. Infrequent dominance interac-
tions tend to be common in species where agonistic interactions are poten-
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Figure 1-C. The unknown elements in the matrix are filled in using a likely-ranking interpo-
lation (equation 7). The best rank order has been solved for the sparse data set by minimizing
the values of I and SI (equations 2 and 5), yielding I = 2 and SI = 9 for this example,
then resolving the relative ranks of unknown dyads using a strength metric (equation 9), and
finally minimizing the sum of elements below the matrix diagonal. Note the changes in the
position of individuals B & G and P & S as a result of resolving their inconsistencies in the
previous matrix. Also, the strength of the inconsistency between individuals K & M has de-
creased from 3 to 2 by altering the ranks of L, K, and M with the result that the inconsistency

was assigned to M & L.

tially costly or life threatening, as has been observed in elephants (Lee, 1987;
Archie et al., 2006) and grizzly bears (Gende & Quinn, 2004). As a result,
dominance relationships among all pairs of individuals may not be easily as-
certained, complicating definition of ranks (see discussion in de Vries, 1995).
As the number of individuals included in a study increases, the number of un-
known relationships tends to increase (relationships increase quadratically
with the number of individuals, thus sampling must increase quadratically to
sample a fixed proportion of dyads). This problem is often encountered in
uncontrolled field studies where dyads cannot be forced to compete (Tarvin
& Woolfenden, 1997; Gende & Quinn, 2004; Roden et al., 2005; Archie et
al., 2006). In many studies, ascertaining the general position of individuals
with few observed interactions is essential for the realization of a dominance
hierarchy and subsequent analysis of behavioural differentiation among in-
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Individual Rank Strength
C 13.18
A 11.20
D 10.32
G 7.48
B 5.90
E 4.00
H 5.52
F 4.72
I 2.66
J −1.26
M −0.08
K −1.60
L −1.00
N −5.84
O −5.88
S −7.76
P −7.18
Q −8.28
R −12.92
T −13.18

Figure 1-D. The optimised individual rank orders and their strengths calculated from matrix
1 C, as described in the text. Note that the individual strength metrics are not completely
monotonic. This is a consequence of initially deferring to the I&SI minimization procedure
as producing the best ordering. For example, the strength of individual M is greater than that
of individual J but J is ranked higher as a result of minimizing the strength of the inconsistency

of dyad (M, L).

dividuals. Few methods, however, are designed to resolve the rank order of
a system with few observations and multiple unknown relationships.

Here we present a likely ranking interpolation approach specifically de-
signed for transitive (i.e. linear) dominance systems, the quantitative assess-
ment of which is imperative prior to implementation (see discussion be-
low), where agonistic interactions occur infrequently resulting in multiple
unknown relationships. For such systems, statistically based methods for as-
signing dominance ranks such as Bradley-Terry models (1952) are untenable
because far too little interaction data are available. Our technique builds di-
rectly upon the widely used I&SI method (de Vries, 1998) that was designed
to determine the rank order of social systems containing unknown and/or
circular relationships among individuals (I refers to the number of inconsis-
tencies and SI to the strength of inconsistencies – see description of the I&SI
method below), but with the limitations of not resolving a unique rank order
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for all systems with unknown relationships nor enabling the quantification of
individual dominance strength metrics (often preferred for statistical analy-
ses of rank driven behavioural impacts). Our method offers the advantages
of both the optimisation and strength categories of methods to overcome the
problems associated with multiple unknown relationships, thereby simulta-
neously yielding an optimised rank order solution, a unique rank order, and
cardinal strengths of individuals in the hierarchy. Hence it is a more infor-
mative method for ranking individuals when data are sparse, and it provides
insights beyond those offered by either type of method alone.

Description of method

Our method enhances the functionality of the I&SI method (de Vries, 1998)
for addressing the problem of unknown relationships and enables the formu-
lation of cardinal dominance strengths from the optimised rank order. The
expanded method entails a five step process to resolve the nearest linear rank
order from a set of dyadic interaction data. For clarity, we summarize the
steps of the I&SI method (de Vries, 1998) in steps 1 and 2 below. The third
step applies a likely-rank interpolation to quantitatively estimate unknown
relationships, necessary for the fulfilment of step four. The fourth step com-
bines observed and interpolated data to solve individual dominance strength
metrics, which are then employed to resolve the relative ranks of unknown
dyads. And the fifth step solves a minimum matrix metric to arrive at the
unique, near linear rank ordering of individuals.

The optimised rank ordering: the I&SI method

In systems with full or partial knowledge, a rank order is termed Hamiltonian
when no individual dominates the individual directly above him (McMahan
& Morris, 1984). Assuming the elements of a dominance matrix are com-
posed of dominance probabilities or 1-0 metrics, an optimised rank order
can be derived by minimizing the sum of the matrix elements to the left of
the matrix diagonal or maximizing the sum of the matrix elements to the
right of the matrix diagonal.

Formally, let aij denote the degree (or probability) to which individual i

dominates individual j . Since aij + aji = 1, it follows that

aji = 1 − aij , i, j = 1, . . . , n, (1)
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where n is the number of individuals in the system. Define the upper and
lower triangular sums of the dyadic interaction matrix A of elements aij

respectively as

H =
n∑

i=1

n∑

j=i+1

aij and I =
n∑

i=2

i−1∑

j=1

aij . (2)

From relationship (1), this implies

H = n(n − 1)

2
− I. (3)

The optimised rank order occurs when H is a maximum or equivalently I

is a minimum. Under conditions of perfect knowledge and linearity (i.e., all
relationships are known and higher ranking individuals always defeat those
of lower rank), I = 0 and the rank order solved using a strength method will
be the same as the Hamiltonian rank order obtained using an optimisation
method. When conditions of perfect linearity and knowledge are not met the
results of these two classes of methods diverge.

The presence of circular polyads (e.g., A dominates B, which dominates
C, which dominates A) in the data result in a number of inconsistencies I in
the rank order (given by equation 2). In the I&SI method, a flipping algorithm
is implemented that switches the relative positions of individuals in the rank
order (Johnson et al., 1982; Roberts, 1990) in a direction that ultimately leads
to the local minimum for I (equation 2; Figure 1-A). We adopt this algorithm
in Step 1 of our method.

Once this minimum is obtained, the I&SI method further restricts solu-
tions to the rank order through the minimization of the sum of differences in
the ranks of all inconsistent dyads. Specifically, if the i − j dyad is inconsis-
tent then aij = 1 (or > 0.5 in the case of probabilistic element values) even
though i > j . Define

ψij =
{

i − j whenever aij = 1
0 otherwise

when i > j. (4)

de Vries’ approach is to minimize the total strength of the inconsistencies

SI =
n∑

i>j

ψij (5)

in a procedure that he refers to as the I&SI method (Figure 1-A). Thus, Step 2
of our method finds the ordering that minimizes SI , subject to the condition
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that I does not increase. De Vries (1998) compared the I&SI method with
a variety of published ranking methods, demonstrating the I&SI method
offered the most robust dominance ordering in a near linear system.

The I&SI approach finds a local minimum. To ensure a good solution, the
procedure is repeated for multiple, different initial orderings of individuals
organized according to the following two-step procedure: (a) individuals are
first ordered by their win-loss ratio, where pairs with equal ratios are ordered
by numbers of wins; (b) a permutation technique is implemented that ran-
domly switches individuals a random number of times from the initial order-
ing such that a spectrum of initial conditions are searched to ensure that the
final solution is not a local optimum. The rank order for each starting position
is then solved by inserting dominant individuals above their subordinates. If
the total change in the number of inconsistencies (equation 2) followed by
the total rank sum difference of these inconsistencies (equation 5) increases
as a result of the row insertion, the insertion is reversed. Finally, the rank
order is regarded as having converged to an acceptable solution when the
value of I followed by the value of SI remains unchanged after repeated per-
mutation runs. Generally, 100 runs is regarded as sufficient for locating the
minimum of both the I and SI metrics (de Vries, 1998). We stress, however,
that minimizing I and SI does not in general produce a unique rank order
when the data are incomplete (unknown dyadic relationships exist) or when
multiple orderings of individuals may offer the same I and SI values. Our
method offers a solution to this problem through the implementation of an
interpolation function to resolve unknown relationships in combination with
the use of strength metrics to order closely ranked individuals.

Resolving unknown relationships

Treatment of unknown relationships has been handled in different ways:
some methods assign the unknown dyad the equivalent value for a tie (e.g.,
0.5 if the dominance is scaled between 0 and 1; Appleby, 1983) while others
ignore the relationship between such dyads in their overall ranking system,
except for adjacently ranked individuals (de Vries, 1998). In strength-based
methods both elements of unknown dyads may be assigned zero (Clutton-
Brock et al., 1979; David, 1987). Assessing dominance relationships across
groups of individuals with large proportions of unknown relationships, how-
ever, is difficult using either optimisation or strength methods.
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Here we present a linear interpolation technique to quantify a likely dom-
inance relationship between unknown dyads. Our method is simple, quick,
and pragmatic and offers a first cut at the problem when data are insufficient
to provide statistically robust approaches: Bayesian or other probabilistic
methods of estimation are problematic when dominance matrices are sparse
because of the huge confidence intervals that arise and associated numerical
computation issues of optimizing maximum likelihood measures. After ex-
ecution of de Vries’ I&SI approach, if interaction values aij are not known
for dyad i − j , (where i and j are the rankings after Step 2) we use 2nd and
higher order relationships of the individuals in the unknown dyad to derive
the probable relationship between the individuals. In Step 3 of our method,
unknown elements are assigned interpolated values

âij = 0.5 − (i − j)/2n (6)

where it is clear that âij + âj i = 1 the caret denotes that this is an interpo-
lated element of the matrix A rather than a value obtained from data). Our
interpolation is based on the assumption that the greater the separation in
ranks between two individuals with an unknown relationship the more likely
the higher-ranking individual is to dominate the lower ranking individual
(Bradley & Terry, 1952; Crow, 1990), with values ranging from almost one
if i is the top individual and j is the bottom individual to almost zero for
the reverse situation (see the discussion of our assumptions below). After
using equation 6 to fill in all the missing values (unknown relationships) in
the interaction matrix A (Figure 1-B), Step 4 of our method calculates each
individual’s relative dominance strength as described next (Figure 1-C).

Calculating dominance strengths

Strength methods are used to obtain a unique rank order for the individ-
uals in a hierarchical system, modulo those individuals that have identical
interaction histories. This uniqueness is an attractive feature for biologists
studying the relationship between dominance and other biological measures
in a population. In Step 4, we apply a strength method to our most current
version of A (which in Steps 1-3 has been minimized with respect to incon-
sistencies and out filled using the interpolating equation 6). In this step all
known dominant-subordinate dyads and the optimised rank order of circu-
lar polyads are conserved. These are conditions that are not met when using
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Figure 2-A. Our dominance strength metric δi subtracts the sum of i-th row elements (wins)
from the sum of i-th column elements (losses) for individual i. The dominance strength for

individual B = 1.16 (= 2.58 − 1.42) and C = 0.18 (= 2.09 − 1.91).

Figure 2-B. The half-matrix metric may be used when the biology of a study organism
affects the distribution of interactions, where an individual is prone to interact more frequently
with individuals near their rank order. The dominance strength calculated from interactions
below the individual in the rank order for individual B = 2.16 (= 0.58+1+1−0.42−0−0)

and C = 1.34 (= 1 + 0.67 − 0 − 0.33).

strength metrics alone (Figure 1-D). The resulting strength metric enables
most unknown relationships to be resolved and can be used for parametric
analysis.

In contrast to other strength methods, which explicitly incorporate a con-
testant’s second order relations (i.e., the relative rank of those defeated or
victorious during pairwise interactions) in the algorithm, second order rela-
tions are implicitly incorporated in our algorithm through the interpolation
procedure, which is dependent on the derived order (Step 3). As a result,
the dominance strength of individuals for both possible rank orders for the
unknown dyad (when B is above C and when C is above B or i = j − 1
and when i = j + 1) must be assessed prior to assigning relative ranks.
This entails recalculating the likely rank metric for each unknown element
after switching the position of the dyad members, since these interpolated
matrix element values will change with the position of the dyad member
(see equation 6). The individual with the greatest dominance strength when
in the higher rank position is designated as the actual dominant individual.
Specifically, our dominance strength metric δi for individual i is generated
simply by subtracting the column sum from the row sum (Figure 2 A): de-
fine a′

ij = aij or a′
ij = âij depending on whether the element is respectively

calculated from data or interpolated using equation 6. Further define ‘above’
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(superscript a) and ‘below’ (superscript b) the matrix diagonal, and row (ρ)
and column (κ) sums:

ρa
i =

n∑

j=i+1

a′
ij , ρb

i =
i−1∑

j=1

a′
ij , κa

i =
i−1∑

j=1

a′
ji , κb

i =
n∑

j=i+1

a′
ji (7)

δ = δa + δb, where δa = ρb
i − κa

i and δb = ρa
i − κb. (8)

Note that δ linearly scales between n− 1 and 1 −n, thereby representing the
full spectrum of possible defeats and wins; δ can be easily scaled between 0
and 1 by (n + δ)/2n. This step in our method allows tied ranks to be incor-
porated into an individual’s dominance strength (de Vries, 1995). Further,
in circumstances where likelihood assessment of dominance ranks results in
equal ranking, our method assigns tied rank values (0.5 in the case of a 0 to
1 rank system) to the unknown dyad’s elements.

The application of this metric may be problematic in circumstances where
the number of unknown interactions is skewed across individuals. In such
cases, an individual’s strength will be artificially boosted when relationships
with higher ranked individuals are unknown, resulting from the high pro-
portion of likely ranking metrics in its row score (sum of wins) instead of
potential 0 values. Correspondingly, an individual with a larger number of
interactions with higher ranks will have 0 scores in its win row and thus have
a lower strength score. Such scaling issues are particularly salient when the
data have a relatively high proportion of unknown relationships or where
the social organization of the study organism results in naturally skewed in-
teraction matrices (e.g., in species which tend to interact only with close
ranking individuals). Under such conditions, implementation of our method
using δ may not offer an acceptable solution to the relative rankings of un-
known dyads. Rather, an individual’s rank strength may be better quantified
by δb (i.e., its interactions with only those below it in the rank order) or by
δa (i.e., its interactions with only those above it in the rank order) (equa-
tions 9; Figure 2-B). Since this half-matrix approach only includes ‘wins’
or ‘losses’ but not both, circular interaction components are excluded from
dominance strength calculations. Thus the half-matrix approach should only
be employed in highly skewed data sets in which no circular relationships
are evident. Differences in the rank order derived by δa, δb, and δ can be
used to identify dyadic relationships subject to skew and those areas in the
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dominance matrix where dominance relationships are sufficiently compli-
cated that the accuracy and applicability of assigning discrete rank values
to individuals is limited. In systems where highly skewed relationships are
recognized and these metrics differ substantially, the use of ordinal ranks or
rank categories is recommended since strength metrics will be biased. The
full-matrix method should be employed for all other scenarios.

Minimizing the sum of elements below the matrix diagonal

The resolution of the relative ranks of unknown dyads in Step 4 offers a
unique rank order to the initial sequence of individuals derived from Steps 1
and 2. As the number of unknown dyads increase, however, the possibility
of multiple, equal solutions to Steps 1 and 2 increases. To resolve the ‘best’
rank order for the systems interaction matrix, Step 5 of our method solves the
minimum sum of the matrix elements below the matrix diagonal (equation
2), ensuring a unique solution for dominance matrices regardless of the num-
ber of inconsistencies. Thus the preferred, unique rank order in a system with
unknown relationships is one containing the minimum number of inconsis-
tencies (Step 1), the minimum strength of those inconsistencies (Step 2), all
unknown relationships ordered according to their dominance strength values
(Step 3 and 4), and finally the minimum sum of elements below the matrix
diagonal (Step 5).

Assumptions

Few assumptions are required to implement the I&SI method (de Vries,
1998) and, hence, our method which uses the I&SI for the initial sorting
procedure. As mentioned previously, the primary assumption of our interpo-
lation function is the greater the separation in ranks between two individuals
with an unknown relationship, the more likely it is that the higher ranking
individuals dominates the lower ranking individual. By implementing a lin-
ear interpolation (equation 6) to out-fill unknown elements in our matrix,
we pragmatically assume the differentiation in ranks among individuals is
simply linear and guided purely by the dimension of the data set (which is
known and hence there are no additional parameters to be estimated). Non-
linear interpolation equations, such as sigmoidal or hyperbolic sine, may of-
fer better approximation of rank differentiation between higher and lower in-
dividuals in some systems where additional information demonstrates such a
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characteristic of dominance relationships (e.g., where strength metrics indi-
cate non-linear differentiation among individuals as if rank relationships are
skewed).

The other major assumption, implicit in the first assumption, is that the
study system has a near linear dominance hierarchy. Thus, we suggest two
measures of linearity be assessed prior to employment of our method. First,
statistical significance of linearity for the dominance matrix should be tested
using a modified Landau’s linearity index h (Landau, 1951) derived from
randomization tests (de Vries, 1995). Second, the degree of symmetry in
dyadic agonistic interactions (with more than a single agonistic interaction
observed) should be assessed using the directional consistency (DC) index
(Noë et al., 1980; van Hooff & Wensing, 1987), whereby the number of
times interactions occur in the higher frequency direction (H ) is subtracted
from the number of time agonistic interactions occur in the lower frequency
direction (L) and then divided by the total number of interactions: DC =
(H − L)/(H + L). In social systems where linear hierarchies cannot be as-
sumed, our method is not appropriate and different techniques such as con-
trolled experiments are needed to assess the context specific relationship of
dominance outcomes between individuals (e.g., territoriality and dominance
in resident versus non-resident birds). Additionally, the individuals compos-
ing the data matrix to be analysed must be from a single, intermixing popu-
lation in which all individuals can potentially interact. Results obtained for
systems that fail to meet the assumptions of near-linearity and intermixing
could well turn out to be spurious.

The degree of independence in units of observation need be considered
prior to the implementation of our method. Some optimisation methods avoid
the assumption of independence in dominance encounters, a condition not
often met in animal systems (Kramer & Schmidhammer, 1992), by making
the dyad the observational unit of analysis and assigning the rounded 1 or 0
value to dyad members with variable numbers of wins and losses. Unfortu-
nately, this procedure may under-represent the available dominance informa-
tion if numerous interactions with variable results have been observed. Prob-
ability values for the elements aij may be preferred over simplified 1-0 values
in studies that employ strength metrics in parametric analyses, since results
using strength metrics are more accurate when employing probabilities. The
illustrative example presented here (Figure 1) demonstrates the versatility in
data structure that our method can use, depending on the user’s assumptions
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regarding the independence of the observational unit. The employment of
probabilities instead of rounded values is simply implemented by assigning
dominance to the i th individual in the flipping algorithm of steps 1 and 2
whenever aij > aji . In contrast with the assumptions of a Bradley-Terry
model (Boyd & Silk, 1983), where the outcome of a dominance encounter
is considered the analogue to a comparison between two objects that comply
with a Bernoulli trial sampling scheme, our assumption of linearity implies
that random observations of interactions between individuals will be skewed
as a result of rank differentiation. As such, even few or single observations of
dyadic interactions offer important insight and are useful in resolving dom-
inance hierarchy orders. In systems containing high numbers of dominance
interactions with multiple observations of dyad interactions, statistically ro-
bust methods are developed to distinguish dominance ranks (Boyd & Silk,
1983; Heinze & Schemper, 2002). It is important to note that the method pre-
sented here is designed for systems in which collection of numerous domi-
nance interactions per dyad, generally requiring at least five observations per
dyad for adequate statistical power (de Vries, 1998), is not feasible.

Analysis of simulated data

In order to test the accuracy of our method, we created two complete domi-
nance matrices containing 20 individuals where the first had a completely lin-
ear dominance hierarchy and the second contained a non-linear dominance
hierarchy with 5% probability of circular polyads imposed across all dyads
(Figure 1 A is the non-linear matrix). The probability of circular polyads
was set to 5% because this is a rather high proportion of circular dyads for
a near-linear dominance hierarchy. The most likely rank order was found for
the complete matrices by minimizing the number of inconsistencies (I ) and
sum of inconsistencies (SI ). We then randomly removed 20%, 40%, 60%
and 80% of elements from both the linear and non-linear dominance ma-
trix (Figure 1 B shows 60% removal of elements in the non-linear matrix).
This resulted in matrices which differed in the number and, correspondingly,
structure of inconsistencies. Our dominance rank algorithm was run on each
of the resulting matrices containing unknown dyads. This process was re-
peated 10 times on each category of matrix, e.g., 60% removal of the non-
linear matrix, in order to get an estimate of the accuracy of the algorithm’s
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performance with the different data regimes. The relative difference in posi-
tion between the known rank and the solved rank for each individual in each
dominance matrix category was calculated (n = 200 per category), from
which the average and standard deviation of differences across all individu-
als was determined.

Not surprisingly, our technique ranked individuals from linear matrices
more accurately across all categories of data removal than individuals from
non-linear matrices (Table 1). Generally, the algorithm performed well on
both linear and non-linear data sets when at least 60% of dyads were known,
with the average difference in ranks being less than 1 and the maximum dif-
ference in rank being 6 among the permuted 40% removed non-linear matri-
ces (Table 1). The accuracy of rankings in matrices with 60% and 80% re-
moval of data decreased markedly. However, the average (± SD) difference
between the solved rank and known rank was still only 3.03±2.59 positions
for the non-linear case with 80% missing data, and no constraints on the
minimum number of interactions per individual (Table 1). Such resolution is
potentially suitable for categorizing individuals in course rank-order groups
like high, medium, and low ranking. The maximum and 75th quartile differ-
ences in an individual’s ranking, respectively equal to 13 and 4 positions,
demonstrate that large errors may occasionally arise when data is sparse (Ta-
ble 1). The use of rank classes instead of individual ranks is therefore more
conservative and will reduce ranking errors.

This lowered performance in the sparser data sets is due in part to the
increased number of individuals for which no or little dyad interaction data
are available. In reality, individuals with no known relationships should be
excluded from analyses. By implementing a simple constraint whereby each
individual in the matrix is required to have a minimum of 3 known rela-
tionships (the maximum possible in a 20 × 20 matrix with 80% of dyads
unknown), the performance of our method improves (Table 1). Particularly
relevant to studies containing few known relationships is our result that the
maximum difference in rank order declined by around a quarter when a min-
imum constraint of three dyads per individual was implemented for the data
set containing 5% circular relationships. The bottom line appears to be that,
for a group of 20 individuals, the relationships among more than half the
dyads need to be known to ensure the maximum placement error is not more
than 3 ranks.
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Table 1. The accuracy of the interpolation method is tested on simulated
dominance matrices containing 20 individuals with 20%, 40%, 60%, and
80% of data missing and matrices containing 10 and 50 individuals with 20%
and 40% of data missing. Results from runs on matrices containing strictly

linear and 5% circular relationships are compared.

Average SD Maximum 75th

difference difference percentile
in rank in rank
position position

Linear
Matrix n = 20

20% 0.28 0.49 2 1
40% 0.55 0.66 3 1
60% no min.1 1.19 1.16 8 2
60% min. 32 1.16 1.21 7 2
80% no min.1 2.28 2.01 9 3
80% min. 32 2.10 1.97 8 3

5% Circularity
Matrix n = 20

20% 0.42 0.79 3 1
40% 0.89 1.19 7 1
60% no min.1 1.74 1.74 12 2
60% min. 32 1.47 1.58 9 2
80% no min.1 3.03 2.59 13 4
80% min. 32 2.61 2.12 10 4

Matrix n = 10
20% 0.24 0.62 3 0
40% 0.62 0.85 3 1

Matrix n = 50
20% 0.52 0.75 4 1
40% 1.28 1.39 8 2

1 No constraint was implemented on the minimum number of relationships per individual.
2 The minimum number of relationships per individual was constrained to 3.

We also explored the impact of the number of individuals in the system
by running our method on a linear system comprising 10 and 50 individu-
als with 20% and 40% removal of data. The ranking performance of matrices
comprising 10 individuals demonstrated improvements over those composed
of 20 individuals (20% removed averaging 0.24±0.62 and 40% removed av-
eraging 0.62 ± 0.85), though the improvement in accuracy was slightly less
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Table 2. Comparison of de Vries I&SI (1998) to our method with linear
interpolation of unknown relationships

Proportion Method Average SD Maximum 75th *Unique
unknown difference percentile solution

20% Interpolation 0.40 0.76 3 1 100%
I&SI 0.41 0.76 3 1 80%

40% Interpolation 1.05 1.26 7 1 100%
I&SI 1.06 1.24 7 2 50%

60% Interpolation 1.38 1.56 9 2 100%
I&SI 1.54 1.56 10 2 30%

80% Interpolation 2.46 2.29 11 3 100%
I&SI 2.66 2.47 11 4 10%

* The proportion of runs in which a unique solution for the dominance rank was found

than the proportional decrease in the number of individuals simulated. Inter-
estingly, the ranking performance in the larger data matrices (20% removed
averaging 0.52 ± 0.75 and 40% removed averaging 1.28 ± 1.39 for matrices
composed of 50 individuals) was similar to that of the matrices composed
of 20 individuals, indicating error rates do not increase in direct proportion
to the number of individuals in a system for larger data matrices. The maxi-
mum displacement in rank also remained similar to the results found for the
smaller matrix (viz. 4 on the 20% and 8 on the 40% removed in contrast to
3 and 7 in the 20 individual system). These results suggest that for sparse
data sets, useful levels of resolution are going to be obtained, even for large
systems.

A separate set of simulations were run to compare the accuracy of de Vries
(1998) I&SI method, as originally published, to the interpolation method
presented here. The difference between these two methods lies in how they
resolve the relative rankings of adjacent pairs of individuals with unknown
relationships. The sum of wins and the sum of losses for each of the unknown
individuals are compared in the I&SI method, and dominance is assigned to
the individual with the greater value. Unique dominance matrices with ap-
proximately 5% circularities (ranging from 3.2% to 9.0%) were created and
a proportion of matrix elements removed (20%, 40%, 60% and 80%) as de-
scribed above. The two methods were then run on the same matrix so direct
comparison of their accuracy could be conducted. Simulation results indicate
that the two methods perform similarly for matrices with 20-40% unknown
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relationships. As the proportion of unknown relationships increases, how-
ever, the interpolation method appears to rank individuals with greater accu-
racy (Table 2). Interestingly, across all four of the matrix categories, some
matrices were more accurately solved by I&SI and other matrices by our
interpolation method, though our interpolation method generally did better
than the I&SI method. The I&SI method did not always find unique solu-
tions to the randomly generated matrices across all categories (Table 2), with
this phenomenon increasing as the proportion of unknown relationships in-
creased. Therefore, comparison to the interpolation method was arbitrarily
selected as the solution from the 400th iteration of de Vries I&SI method.

Discussion

Our likely dominance ranking method combines the strengths of two existing
and complementary approaches to ranking hierarchies of individuals. First,
our method uses an optimisation paradigm to find the rank order nearest
to a linear hierarchy, following the sorting procedure of the I&SI method
(de Vries, 1998), and then employs a strength paradigm to ensure the final
order is a unique solution. As with the I&SI method, this offers an advantage
over other methods by not weakening or undermining the results of known
interactions.

Simulated data were used to compare the I&SI method (de Vries, 1998) to
our interpolation function. The simulations demonstrated several advantages
of the interpolation method over the I&SI method. First, the interpolation
method derives a unique solution to any dominance matrix regardless of the
number and structure of unknown relationships. The I&SI method failed to
find unique solutions in all categories of matrices tested, even occasionally
in those with 20% unknown relationships (Table 2). Second, the accuracy
of the interpolation method and the I&SI are similar when the majority
of relationships are known; however, as the proportions of unknown dyads
increases the interpolation method is more accurate than the I&SI method.
Third, our technique can use multiple types of data to resolve the rank order:
the observational unit can be designated at the categorical 1-0 (win-lose)
dyad level or the graded, probabilistic value arising from scoring multiple
interactions of the same pair allowing all information on the dominance
relationships between individuals to be incorporated into the assessment of
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rank. Finally, the interpolation method derives a strength metric for each
individual which can be use in subsequent analyses – a characteristic similar
to the often used David’s Score (David, 1987; Gammell et al., 2003).

The calculation of continuous dominance strength metrics, not offered by
the I&SI method, is of relevance to many studies of dominance. The benefits
of such a metric include resolving the rank order among closely ranked indi-
viduals, identifying dyads with truly tied ranks, and providing a continuous
variable with which to compare behavioural correlates. Employing only the
strength metric from our method in parametric analyses should be conducted
with caution because circular polyads can result in a non-linear relation be-
tween a strength-based order and the order derived using an optimisation
method (Fig. 1 D). The relative strengths of linearly ranked portions of the
interaction matrix, however, can be used in parametric comparisons. The in-
corporation of our strength metric, the sum of elements in an individuals
row (wins) minus the sum of elements in an individuals column (losses), to
solve unresolved components of the rank order consistent with the I&SI re-
sult offers a novel combination of the two conventions of ranking techniques
thereby drawing upon the advantages of both approaches.

The accuracy of our method was tested on simulated dominance matri-
ces with different proportions of unknown and circular relationships. Solved
rank orders were compared with known rank orders, providing a quantified
assessment of algorithm performance (Table 1). The algorithm provided use-
ful information on relative ranks even when large proportions of the matrix
elements were empty. We found that relatively simple rules, such as setting
limits to the number of unknown dyads per individual, can greatly increase
the accuracy of rank orders, particularly as the size of the system increases.
Furthermore, our results indicate that our approach can be used effectively as
an aid in determining key unknown dyads whose relationship, when known,
will disproportionately improve the solved rank order. Thus, in addition to
solving the best rank order, our method may be usefully employed to explore
the structure of behavioural data and improve data collection regimes. While
this algorithm will solve the most likely linear dominance order for the avail-
able data, data quality and quantity and skew in inter-individual dominance
relationships can strongly impact results. Dominance strength metrics are
particularly subject to error from skewed relationships. When data quantity
is low and skew occurs, results should be applied to analyses with caution
and we recommend using dominance categories based on the error rates from
our simulated data rather than individual based metrics.
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