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Abstract. High-resolution animal location data are increasingly available, requiring
analytical approaches and statistical tools that can accommodate the temporal structure and
transient dynamics (non-stationarity) inherent in natural systems. Traditional analyses often
assume uncorrelated or weakly correlated temporal structure in the velocity (net displacement)
time series constructed using sequential location data. We propose that frequency and time–
frequency domain methods, embodied by Fourier and wavelet transforms, can serve as useful
probes in early investigations of animal movement data, stimulating new ecological insight
and questions. We introduce a novel movement model with time-varying parameters to study
these methods in an animal movement context. Simulation studies show that the spectral
signature given by these methods provides a useful approach for statistically detecting and
characterizing temporal dependency in animal movement data. In addition, our simulations
provide a connection between the spectral signatures observed in empirical data with null
hypotheses about expected animal activity. Our analyses also show that there is not a specific
one-to-one relationship between the spectral signatures and behavior type and that departures
from the anticipated signatures are also informative. Box plots of net displacement arranged
by time of day and conditioned on common spectral properties can help interpret the spectral
signatures of empirical data. The first case study is based on the movement trajectory of a lion
(Panthera leo) that shows several characteristic daily activity sequences, including an active–
rest cycle that is correlated with moonlight brightness. A second example based on six pairs of
African buffalo (Syncerus caffer) illustrates the use of wavelet coherency to show that their
movements synchronize when they are within ;1 km of each other, even when individual
movement was best described as an uncorrelated random walk, providing an important spatial
baseline of movement synchrony and suggesting that local behavioral cues play a strong role
in driving movement patterns. We conclude with a discussion about the role these methods
may have in guiding appropriately flexible probabilistic models connecting movement with
biotic and abiotic covariates.

Key words: African buffalo; animal behavior; lion; movement ecology; Panthera leo; stochastic
differential equation; Syncerus caffer; time series analysis.

INTRODUCTION

The study of movement provides links among

behavior, foraging strategies, population dynamics,

community ecology, landscape characteristics, and

disease (Nathan et al. 2008, Patterson et al. 2008). As

such, movement ecology offers a promising approach

for understanding the interplay among different levels of

ecologically significant biological organization. Theoret-

ical models and their fitting to data facilitate our

understanding of ecological patterns driven by move-

ment and dispersal. Both spatial (e.g., home range) and

temporal (e.g., correlated random walk) methods of

analysis exist. We focus on the latter but note that the

results of time-resolved analyses can be interpreted in a

spatial context (e.g., Wittemyer et al. 2008).

Among the most common null hypotheses of move-

ment is the class of uncorrelated random-walk models;

they are applied to a wide variety of research areas

including foraging strategies (Bartumeus et al. 2005,

Edwards et al. 2007, Reynolds and Rhodes 2009),

dispersal kernels (Nathan 2006), and rates of invasion

(McCulloch and Cain 1989, Turchin 1998). Many

models that incorporate temporal dependency, including

relatively complex state–space models, have focused on

first-order autocorrelation as the extent of temporal

structure in current net displacement (Anderson-Sprech-

er and Ledolter 1991, Jonsen et al. 2003, 2005, Forester

et al. 2007) or on directional persistence (Kareiva and

Shigesada 1983, Root and Kareiva 1984, Bovet and
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Benhamou 1988, Turchin 1991, 1998). More recent

efforts using modern statistical techniques to study

models based on difference equations tend to focus on

estimating behavioral states and behavioral mode

changes (Patterson et al. 2008, Web et al. 2008, Gurarie

et al. 2009), but do not focus on the regularity in which

these changes may occur.

Animal location data are being collected at increas-

ingly high resolutions (0.25–4.0 hour sampling inter-

vals of large mammals are now quite common) over

several seasons. For such data, first-order autoregres-

sive (hereafter abbreviated by AR(1)) and random-

walk models may miss important features of the data.

Regular temporal oscillations of light and temperature,

spatio-temporal resource variation (e.g., plant phenol-

ogy), changing internal physiological states (e.g.,

hunger, the need for water, and reproduction), long-

term memory, and dynamic inter- and intraspecific

population densities are a few likely contributors to

movement patterns. Resulting movement patterns may

have a high degree of temporal correlation operating at

multiple scales and with changing statistical properties

(i.e., movement is likely to be nonstationary at one or

several temporal scales) relating to scale-specific factors

affecting movement. For example, evidence of tempo-

ral dependence in net displacement operating at

multiple scales has been documented for two different

elephant systems (Cushman et al. 2005, Wittemyer et

al. 2008).

Given the propensity for many plausible movement

mechanisms to operate on fairly regular but different

frequencies, with the relative contribution of each driver

potentially changing over time, Fourier and wavelet

methods (also referred to as frequency and time–

frequency methods, respectively) are natural methods

to analyze the cyclicity of animal movement and

behavior (Wittemyer et al. 2008). The nonparametric

nature of these methods makes them particularly useful

as initial statistical probes for detecting and understand-

ing transient relationships among movement and

physiological, ecological, climatic, and landscape fac-

tors.

While Fourier transforms have been increasingly

applied in movement studies (Brillinger 2003, Brillinger

et al. 2004, 2008), wavelet transforms are less common in

movement studies (but see Wittemyer et al. 2008).

Wavelet methods have been productive in other areas of

ecology, including disease (Grenfell et al. 2001, Cazelles

et al. 2007) and population dynamics (Cazelles et al.

2008). However, neither frequency nor time–frequency

methods have been evaluated in a systematic manner on

movement data with known properties (i.e., simulated

data) or presented in a general way. The purpose of this

paper is to first evaluate the utility of applying Fourier

and wavelet transforms to time series of individual

animal movement velocity data (defined as the net

displacement from one observation to the next) by using

an advection–diffusion based simulation model to

generate synthetic movement data. In addition, we

discuss and present evaluation of crucial issues related

to significance testing; in particular, we examine the role

that the ‘‘areawise’’ test (Maraun et al. 2007) can play in

addressing intrinsic correlation in the wavelet signal

before moving on to empirical studies. Then, we present

several empirical examples that illustrate how ecological

insight can be gained from Fourier- and wavelet-based

analyses.

We begin by briefly reviewing Fourier and wavelet

methods. Next we introduce and expand a general

stochastic differential equation previously used to

analyze and simulate movement (see Brillinger 2003,

Brillinger et al. 2004, 2008, Wittemyer et al. 2008),

performing simulation studies to test and illustrate these

methods. In particular, we focus on how different

mixtures of behavior and changes among these mixtures

affect the statistical signatures and consider which of

several simplistic null hypotheses and significance testing

methods most accurately detect behavioral changes.

Additional sampling interval considerations are relegat-

ed to the Appendix. We illustrate these methods in

practice using movement tracks from a single lion

(Panthera leo) and six African buffalo (Syncerus caffer).

Despite the lack of high-resolution covariate data from

which to build mechanistic models, our analyses yield

new ecological insights regarding the influence of moon

phase on rest cycles in lions and the synchronizing

influence of herding behavior in buffalo beyond the

effects of local landscape features. Software and

computational strategies described in the methods are

highly developed and publicly available; all analyses

here were done in the freely available R environment (R

Development Core Team 2008) making such approaches

quite accessible. We conclude by elucidating how the

statistical probes presented here may contribute to

research using mechanistic movement models that rely

on likelihood-based statistical inference.

METHODS

Fourier and wavelet transforms

We provide a brief overview of Fourier and wavelet

analysis, with greater detail and further references

provided in the Appendix (Section A1). Useful starting

references include Carmona et al. (1998), Torrence and

Compo (1998), Cazelles et al. (2008), and Maraun et al.

(2004, 2007). To introduce notation, we start with the

continuous position of an animal at time t in the planeR2

by the spatial coordinates r(t)¼ (x(t), y(t)). The data are

discretely sampled locations r(tj) ¼ (x(tj), y(tj)), j ¼ 0, 1,

. . . , N, at a constant sampling interval Dt¼ tjþ1 – tj for all

j. The time series X
N ¼ fX0, . . . , XN�1g is used to

constructN approximate velocitiesXj¼jr(tj)� r(tj�1)j/Dt.
Fourier analysis is a ubiquitous tool throughout

science, inter alia, allowing estimation of the strength

of frequencies x making up the spectral density f(x) of
a stationary stochastic process. Given the data X

N, the
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periodogram estimates the spectral density and will

show peaks in its power at frequencies most correlated

with the data. In addition, the exact analytic relation-

ship between independent and identically distributed

(i.i.d.) normal distributions (white noise) and AR(1)

(red noise) models and their spectral densities is known

(Gilman et al. 1963, Shumway and Stoffer 2000). This

relationship provides a convenient approach for

comparing empirical movement data against null

random-walk models.

Several broad remarks can be made about the choice

of the periodogram as a means to probe movement data

for temporal structure. Plotting the autocorrelation

function, which describes the linear relationship between

Xt, and Xt�h, for different lags h, may be a more familiar

tool for ecologists. This approach, however, requires a

choice on the number of lags that can be realistically

included, and estimates of the linear relationship as a

function of lag h will be sinusoidal in nature for data

with cyclic switches between behavioral modes, making

them less efficient for summarizing the correlation

structure (Fig. 1). In contrast, Fourier analysis can

more sharply identify dominant frequency patterns in

movement data, and due to its close connection with the

machinery and output of a wavelet analysis, facilitate

the application of this tool for detecting non-stationarity

in movement.

Continuous wavelet transforms solve some of the

limitations of Fourier analysis by decomposing XN into

a function of both time and scale. First, a wavelet

function is chosen, which will have a periodic quality

and whose period changes for different analyzing scales.

We chose the Morlet wavelet, a damped complex

exponential, and set its oscillation parameter to preserve

an approximate relationship between the scale of the

wavelet analysis and the frequency in a Fourier analysis

(Appendix); subsequent discussion will hence refer to the

time–frequency plane. The wavelet transform of XN

using the Morlet wavelet produces an array of complex

numbers in the time–frequency domain from which the

estimated wavelet power spectrum (scalogram) can be

computed as the squared modulus of these numbers.

Relatively large scalogram values identify points in time

where the frequency content of XN matches closely that

of the Morlet wavelet for a specific frequency, while

small scalogram values identify a mismatch. Another

useful tool, based on a wavelet Parseval formula, is the

calculation of the proportion of the variance of XN

explained by a band of frequencies through time (Blatter

1998, Torrence and Compo 1998). We will use this tool

to categorize movement by its dominant frequency of

interest at each time step.

Several features of the scalogram are necessary to

consider when evaluating the significance of scalogram

values. First, estimating significance of scalogram values

relies initially on bootstrapping (Torrence and Compo

1998). For example, to test if a velocity time series is

different from white or red noise, one would estimate the

white or red noise parameters from XN, generate a large

number of replicate velocity time series, and estimate

quantiles for each modulus value. Second, because

neighboring times and scales in a scalogram contain

intrinsic correlation (Maraun and Kurths 2004, Maraun

et al. 2007), this correlation must be taken into

consideration. To address this, Maruan et al. (2007)

have developed an ‘‘areawise’’ test that removes spurious

area of significant scalogram values deemed significant

by a bootstrapping test. The areawise test as imple-

FIG. 1. Square-root transformed lion (Panthera leo) veloc-
ity (m/h before transformation) shown (a) as a time series and
(b) as box plots of velocity by time of day where the thick line
denotes the median value, the box extends from the 25th to the
75th percentiles, and the whiskers extend to 1.5 times this
interquartile range. (c) Fourier periodogram normalized so that
the theoretical white-noise spectrum is at the constant power
value of 1; the theoretical spectrum of a red-noise data model is
shown by the dashed line. The strong peak at 1 cycle/day reflects
an overall daily behavioral sequence of resting during the day
with increased activity at night. For comparison with time
domain methods, panel (d) shows the estimated autocorrelation
function (ACF), with the horizontal lines drawn at 61:96=
ffiffiffiffiffiffiffiffiffiffiffiffi

N � 1
p

corresponding to the approximate 95% confidence
intervals for a white-noise data model.
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mented in Maruan et al. (2007) and employed here,

considers the size and geometry of each significant

patch, comparing it with that expected from the

reproducing kernel of the Morlet wavelet, removing
;90% of the spuriously significant area defined from

bootstrapped quantile estimates of the null model.

Third, the cone of influence (the region of the scalogram

where edge effects resulting from the finiteness of the

data are present) must be calculated (Torrence and
Compo 1998). Modulus values outside this cone of

influence have been influenced by the finiteness of the

data and should be used with caution in biological or

statistical inference.

With two contiguous time series, cross wavelet

analysis can aid in comparing the time-specific features

of movement data between two individuals. This cross
wavelet analysis, when based on the Morlet wavelet,

produces an array of complex numbers that provide the

time-resolved correlation between the two individuals

(wavelet coherence), the values of which range from 0 to

1, with 1 denoting perfect linear correlation and 0
denoting no relationship. In addition, the phase lag

between them (measured in radians from�p to p) can be

estimated. Smoothing in the time and scale dimensions is

essential when computing wavelet coherency and phase

differences (for details, see Maraun and Kurths 2004).
After applying both the bootstrapping and an areawise

tests for identification of significant co-oscillation

between two movement time series, some consideration

should be given to the expected duration, frequency, and

phase difference at which synchrony occurs for ran-
domly related movement trajectories with similar

spectral properties (e.g., two individuals both take

extended midday and midnight rests, but are otherwise

unrelated); options include simulations or bootstrapping

based on surrogate data produced with similar Fourier
spectral (Schreiber and Schmitz 1996) or wavelet

properties (Maraun et al. 2007).

Stochastic movement model

In this section, we present a model of animal
movement based on a stochastic diffusion process (see

Iacus [2008] for a general introduction to this branch of

statistics) that has been previously used in several

movement studies (Brillinger 2003, Brillinger et al.

2004, 2008, Wittemyer et al. 2008). The continuous
position r(t) of an animal at time t is modeled by the

stochastic differential equation

rðtÞ ¼ rð0Þ þ
Z t

0

lðrðsÞ; sÞdsþ
Z t

0

rðrðsÞ; sÞdBðsÞ ð1Þ

where l is the drift representing the deterministic
component of movement, r is a parameter controlling

the stochastic contribution to movement, B is a Wiener

process (Iacus 2008), and r(0) is the initial location, all of

which are vectors or functions in the x–y plane R2.

Movement trajectories of arbitrary spatial and tem-

poral complexity can be simulated using Eq. 1 through

complicated assignments for l and r as functions of

space and time. For example, assignments may be

motivated by organisms known to be crepuscular or

nocturnal/diurnal, with l and r periodic in time. The

general recipe we use for simulation is described next,

and specific details on simulating solutions to models

such as Eq. 1 may be found in the Appendix (Section 2)

and Iacus (2008). By assuming l and r to be constant

over discrete intervals of time, Eq. 1 models movement

as a locally memoryless diffusion process, but can

accommodate different canonical activities when l and

r are switched over time. The intent of our exposition in

this paper, motivated by the results of the empirical

studies, is to present methods for analyzing systems

where l and r switch back and forth over consecutive

discrete intervals of time.

In our simulations, we represent three canonical

behavioral modes of activity (e.g., resting, feeding, and

moving among patches), by assuming that l and r
switch among three sets of distinct pairs mi¼ (li, ri ), i¼
1, 2, or 3 (note li and ri are themselves two-dimensional

vectors). Let mik be the kth behavioral mode (in this

example, either of type 1, 2, or 3) in the sequence SK [

mi1 ;mi2 ; . . .;miKf g where K � 1 is the total number of

mode switches, and let EK [ fs1, s2, . . . , sKg be the

expected temporal durations for each mik . Assigning

values to the sk in units of hours such that RK
k¼1 sk¼ 24

hours, together with the mode sequence SK, defines an

expected daily behavioral sequence.

By changing the sequence of modes in SK, the values

of sk, and the value of K itself, we can simulate different

null models of movement according to different

expected daily behavioral sequences. In the simulations

we present below, we set l1¼l2¼ (0, 0)>, l3¼ (10, 10)>,

r1¼ (0, 0)>, r2¼ (2, 2)>, and r3¼ (2, 2)>, where > is the

transpose of the matrix for all positions r(t). The latter

assumption that the switch of values does not depend on

position in space, but will only depend on time, is

equivalent to assuming the process takes place in a

spatially homogeneous environment. To help with

conceptual clarity, we classify the behavioral modes

m1k
as ‘‘rest,’’ m2k

as ‘‘feed,’’ and m3k
as ‘‘taxis’’ but do

not bother to specify the actual units since it is only the

relative differences among modes that determine the

inherent pattern for a single individual. Additionally,

one assumption easily relaxed is that the actual amount

of time spent in each behavioral mode mik from one day

to the next will likely be stochastic. We include this

feature in the model by selecting a uniform random

variable distributed on the interval [sk� 0.5h, skþ 0.5h],

where h denotes hours, during each simulation day for

the amount of time spent in mode mik . Choosing

sufficiently broad intervals from which to select a

realized time in each behavioral mode will remove the

regularity of the daily behavioral sequence and therefore

the temporal structure in the daily movement, but other

reasonable choices for the width of this interval did not

appreciably alter the results. A representative example of
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a simulated movement path and associated velocity time

series is shown in the Appendix: Fig. A1.

Fourier and wavelet transforms in practice

Transforming the velocity X
N by its square root can

help improve the utility of spectral analyses in several

ways. For the Fourier transforms, this helps identify the

cyclic nature of velocity time series by stabilizing the

variance. The square-root transform also improves the

ability of the wavelet analysis to identify temporal

structure across a range of temporal scales by diminish-

ing the effect of singular, large velocity values;

inordinately large velocity values, while potentially

informative about movement ecology in their own right,

are associated with high wavelet power across a range of

frequencies at a specific point in time and obscure other

information in the scalogram. Also, we normalized all

Fourier transforms by the variance XN to facilitate

comparison with theoretical Fourier spectrums of

modeled white and red noise (the choices for smoothing

parameters when implementing Fourier and wavelet

transforms are given in the Appendix: Table A1).

Missing data values in XN, such as those originating

from missed GPS fixes, require an appropriate fix that

does not artificially create time-dependent signals nor

abandon all notion of time dependence in the data. For

both empirical studies, we estimated missing latitudinal

coordinates using the Kalman smoother (Shumway and

Stoffer 2000) obtained from the state–space model

latobs(t) ¼ lattrue(t) þ wt, lattrue(t þ 1) ¼ lattrue(t) þ vt,

where wt and vt are each independent, identically

distributed normal random variables both with mean 0

and variance r2
obs and r2

proc, respectively. Longitudinal

positions were estimated similarly. Another closely

related option would be to use linear interpolation

between missing values, but the state–space approach

here conditions on all observed data and provides a step

toward implementing more sophisticated process mod-

els. (Unreported analyses indicate that this choice does

not change the conclusions of this paper.) Either of these

approaches would clearly fail to address any potential

spatio-temporal movement complexity, but we do not

wish at this stage of analysis to construct the complexity

which we are trying to detect. In the Discussion section,

FIG. 2. Contour plot of loge-transformed, averaged normalized periodogram values (power) from 100 simulated movement
trajectories consisting of daily bimodal behavior. The daily behavioral sequence is given by the movement mode set SK¼fm2, m3g
with the values of mi as defined inMethods: Stochastic movement model. The expected time spent in mode 2 was varied among f0, 1,
. . . , 12g to span a movement complexity of no behavioral switching (s2¼ 0, i.e., a random walk), to evenly partitioned switching (s2
¼ s1 ¼ 12 hours, i.e., symmetric bimodal behavior). For each ratio we simulated 100 continuous movement paths and sampled
locations each hour for 30 days. Lines are contoured at the levels of loge(1)¼0 and enclose regions of frequencies with power larger
than that expected by white noise. SK is the number of distinct movement modes; m2 is movement mode 2, and m3 is movement
mode 3, as defined in Methods: Stochastic movement models; s1 and s2 are expected temporal durations for m1 and m2, respectively.
Grayscale units are in power per cycle per velocity sample, where power is the periodogram value.
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we outline how the methods discussed in this paper may

be used in conjunction with movement process models
that incorporate relevant complexity (e.g., behavioral

switching, covariate data) to produce models and
subsequent estimates of missing spatial positions that

more completely incorporate movement complexity.

RESULTS

Simulated examples

Our first use of the movement model discussed here is
to introduce minimal behavioral mode switching to a

random-walk model and explore how the frequency
spectrum evolves from the theoretical flat line. Setting K

¼2, where K� 1 denotes the number of changes between
behavioral modes, and Dt ¼ 1 hour, we varied the ratio

s2/s1 from 0 (random walk) to 1 (s1 ¼ s2 ¼ 12 hours; a
condition producing time symmetric bimodal behavior).

In Fig. 2 we see how, as the ratio s2/s1 increases, the
power at x ¼ 1 cycle/day becomes dominant, while for
s2/s1 ¼ 0, no single frequency is strongly differentiated,

as expected from a stochastic random walk. This
analysis in insensitive to relatively large Dt, with the

same basic result holding at the coarser sampling
interval of Dt ¼ 4 hours (Appendix: Fig. A2). We

examine how the spectral signatures of crepuscular
activity, another biologically common daily movement

pattern, differs from a random or bimodal activity
pattern. Increasing the value of K to a minimum of 4 in

our movement model produces two active periods each
day separated by less active periods. For such a

movement pattern, strong peaks in the periodogram
occur at the frequency x¼ 2 cycles/day (Fig. 3). Again,

the basic pattern holds when Dt ¼ 4 hours (Appendix:
Fig. A3). Regardless of the movement complexity, the

periodogram provides a good indication of when
temporal dependency exists, but both frequency aliasing
and spurious peaks at higher frequencies may limit the

ability to map a specific periodogram to a specific daily
behavioral sequence.

Our second use of the movement model is to evaluate
and illustrate frequency and time–frequency methods in

the presence of movement non-stationarity. We simu-
lated a path where the daily behavioral sequence was

bimodal for an expected 20 days, random for an
expected 10 days, and crepuscular for a final expected

20 days (the sample movement path and velocity for the
time series analyzed here is shown in Appendix: Fig.

A1). As expected, a Fourier analysis provides indication
of temporal dependency (Fig. 4a), but only the wavelet

transform detects the behavioral shifts (Fig. 4b–d). A
white-noise model, combined with an areawise test of

significant modulus patches, appears to provide the
most accurate delineation of changes between daily

behavioral sequence patterns (Fig. 4b), while the
random-walk portion of this movement trajectory
remains characterized by spurious patches of significant

modulus values scattered across a range of frequencies.
These basic patterns hold for the coarser sampling

interval Dt ¼ 4 hours (Appendix: Fig. A4). Though

generated from a single realization of the model, the

example result presented in Fig. 4 is a very good

representation of the ‘‘true’’ scalogram, estimated by

averaging results over many simulations (Appendix: Fig.

A5).

Summarizing the simulation study, dominant modes

of behavior, e.g., one or two rest periods, are reflected in

the periodogram by strong peaks at x ¼ 1 or x ¼ 2

cycles/day, respectively. However, there does not appear

to be an exact one-to-one relationship between the

location of significant peaks in the spectral signature and

FIG. 3. Periodograms for two kinds of simulated crepuscu-
lar activity sampled every hour. (a) For the ‘‘one rest type’’
activity, the daily behavioral sequence was defined by SK¼fm1,
m3, m1, m3g and EK ¼ f4, 8, 4, 8g (the expected temporal
durations for each movement mode mik ) interpreted as
alternating between rest and taxis. (b) The ‘‘two rest types’’
activity was defined by SK ¼ fm1, m3, m2, m3g and EK¼ f4, 4,
12, 4g, interpreted as the sequence rest, taxis, feed, taxis. The
power spectrum in each figure panel represents the mean of 100
normalized periodograms. Horizontal dashed lines are drawn at
the value of a theoretical white-noise spectrum.
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FIG. 4. Frequency and time–frequency analyses of a simulated individual movement trajectory over 50 days sampled at Dt¼ 1
hour. The daily behavioral sequence (with mi defined in Methods: Stochastic movement model ) was SK¼fm1, m2, m3, m2g and EK¼
f6, 6, 6, 6g, corresponding to equal times of rest, feed, taxis, feed for the first 20 days, followed by randomly chosen behavioral
modes with expected temporal duration sk¼ 1 hour for the middle 10 days, and ending with crepuscular activity defined as SK¼
fm1, m3, m2, m1, m2, m3g with EK¼ f4, 4, 4, 4, 4g corresponding to equal expected durations of rest, taxis, walk, rest, walk, taxis,
during the final 20 days. (a) The normalized smoothed periodogram shows peaks different from white (constant value of 1) or red
(dashed line) noise null models, suggesting cyclic behavior. (b) Contoured squared wavelet modules values (smaller values are given
by whiter colors and larger values by darker colors). Using 1000 simulated step-length time series based on the white and red noise
null models, we calculated the bootstrapped 95th percentile significant patches, delineated by thin dashed and solid lines,
respectively; significant patches remaining from an areawise test (seeMethods: Fourier and wavelet transformation) are delineated by
thick dashed and solid lines for the white and red noise null models, respectively. The cone of influence is delineated by the arched
solid black line. Panels (c) and (d) show the time series of the percentage variance explained by frequency bands around (c) x
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FIG. 5. (a) Wavelet analysis of lion velocity data (smaller values are given by lighter colors and larger values by darker colors)
shows a dominant, yet transient, 1, 2, or no cycles/day behavior. Significant patches are defined as those that lie inside the solid
black closed lines, which delineate patch area remaining from an areawise test of patches defined by 95th estimated percentiles
obtained from 1000 bootstrapped white-noise null-model time series, delineated by dashed lines. The cone of influence is delineated
by the smooth, arched solid black line. (b–d) Tukey box plots, where the thick line denotes the median value, the box extends from
the 25th to the 75th percentiles, and the whiskers extend to 1.5 times this interquartile range, of square-root transformed velocity
(m/h before transformation) grouped by hour of day for different partitions of the data: (b) times during which scalogram values at
1 cycle/day are significant and explain a greater proportion of the variance than scalogram values at 2 cycle/day, indicating a basic
active–rest cycle; (c) times during which scalogram values at 2 cycles/day are significant and explain a greater proportion of the
variance than scalogram values at 1 cycle/day, identifying several active nights during which a secondary rest period occurs; (d) box
plots without significant scalogram values at 1 or 2 cycles/day, identifying nights with less activity.

 
¼1 cycle/day and (d) x¼2 cycles/day, where XN is the length N time series of movement velocities, defined in Methods: Fourier and
wavelet transforms.
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behavioral modes for realistic sampling intervals and

noise. For example, simulations of both bimodal and

crepuscular activity produced significant frequencies at

x¼1, 2, and 3 cycles/day (Figs. 2–4 and Appendix: Figs.

A2–A4). Wavelet analyses proved useful for distinguish-

ing changes in the frequency content but also produce

spurious patches of significant scalogram values. Final-

ly, the correlation of modulus values across both the

time and frequency dimensions, and choice of smooth-

ing parameters, will obscure precise identification of

changes in the daily behavioral sequence.

Case study: Panthera leo

The first case study investigates the location time

series of an individual female lion in the Kruger

National Park (KNP), South Africa, with a sampling

interval Dt ¼ 1 hour from 19 May 2005 through 16

November 2005. The periodogram of this data has a

dominant peak at a frequency of x ¼ 1 cycle/day (Fig.

1c), reflecting a daily behavioral sequence arising from

relatively small daytime (e.g., resting) and high night-

time (e.g., hunting) velocity values (Fig. 1b). The smaller

peaks at x¼2 and x¼4 cycles/day also indicate possible

deviations from a random-walk model, but may also

reflect spectral harmonics, and bear further investigation

given the slight decline in median values at around 21:00

hours and 04:00 hours (Fig. 1b); further investigation of

the data related to x ¼ 4 did not reveal a strong

alternative behavior type, and we subsequently focus on

significance at the x ¼ 1 or 2 cycles/day.

A wavelet analysis (Fig. 5a) confirms information

from the Fourier spectrum (Fig. 1c), but indicates the

existence of additional structure: the bimodal behavior

waxes and wanes somewhat irregularly, and significant

time–frequency patches around x¼ 2 cycles/day do not

appear to be related to the primary bimodal behavior.

Using the percentage variance explained at each time

step and a white-noise null model of movement to

partition the data into subsets for which x¼ 1 cycle/day

is significant and dominant, x¼ 2 cycle/day is significant

and dominant, or for which neither x¼ 1 cycle/day or x
¼ 2 cycles/day is significant (random-walk type behavior

at a daily time scale) provides a more interpretable

understanding of the different behavioral modes en-

gaged in by this lion (Fig. 5b–d, Table 1): the primary

signature of x ¼ 1 cycle/day reflects a bimodal activity,

the strength at x ¼ 2 cycles/day reflects several nights

during which additional rest periods take place, while

time for which random walk occurs is typified by overall

less activity throughout a 24-hour period. The results of

the wavelet analysis further partition the lion data in a

useful manner not readily obvious from either random-

walk assumptions or Fourier analyses.

Explaining the cause of these changes in the daily

behavioral sequence is the natural next step in any

ecological study. Here, the primary reason for deviation

from the bimodal active–rest daily behavioral sequence

is reduced nighttime movement, of which there are

several possible explanations, including suboptimal

hunting conditions resulting from too much light or

recent feeding events. Nighttime darkness has been

shown to be a significantly important variable in

predicting lion hunting success (Funston et al. 2001)

and is important in the development of models used to

predict lion kill sites from hourly GPS data (C. J.

Tambling, unpublished data). A cross-correlation be-

tween velocity and moonlight luminosity showed a

negative correlation at the 0 lag and a positive

correlation at a two week lag, while the cross-correlation

between scalogram values at the frequency x ¼ 1 cycle/

day and moonlight luminosity indicates that nighttime

darkness predicts increased velocity cycling by several

days (Appendix: Fig. A6). The negative correlation of

velocity and cycling with moonlight luminosity, and

associated decline in median velocities during nights

TABLE 1. For each time series, a wavelet analysis was used to
partition velocity sample times according to one of several
characteristic daily behavioral sequences as identified by
peaks in the Fourier transform of velocity data.

Daily behavioral sequence type Time spent in each type (%)

Lion (Panthera leo)

1 cycle/day 63
2 cycles/day 3
Random walk 34

Buffalo (Syricerus caffer)

T7

1 cycle/day 17
2 cycles/day 17
3 cycles/day 2
Random walk 64

T12

1 cycle/day 5
2 cycles/day 16
3 cycles/day 6
Random walk 73

T13

1 cycle/day 4
2 cycles/day 14
3 cycles/day 9
Random walk 73

T15

1 cycle/day 12
2 cycles/day 14
3 cycles/day 4
Random walk 69

T16

1 cycle/day ,1
2 cycles/day 20
3 cycles/day 7
Random walk 72

T17

1 cycle/day 6
2 cycles/day 5
3 cycles/day 9
Random walk 80

Notes: Random walk was defined as the time for which no
cycling activity was present. Percentages indicate the amount of
time the sequence type is representative of the data. T7, T12,
and so on, are individual buffalo.
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associated with no cycling, suggests that an increase in

activity occurs during darker nights associated with the

new moon. We also investigated the role of known kills

on lion movements in an effort to detect possible triggers

for additional rest periods or days during which more

movement occurred, but no obvious patterns were

present. This may be a function of unknown kills

eroding the differences between days with and without

known kills as well as the influence of kill size relative to

the size of the lion pride on movements (larger kills may

elicit longer rest periods). Our analyses suggest several

areas where data collection efforts could be focused,

including cloud cover, reproductive activity, predation

success, prey abundance, or failed-kill attempts, all of

which are likely to impact the continuity of repetitive

movement by lions.

FIG. 6. Analyses of two African buffalo (Syncerus caffer; T12 and T13 in Table 1) in July through October 2005: (a) the
distance between them, (b) their wavelet coherency, and (c) wavelet coherency phase differences, where the color-value relationship
is shown by the color bars to the right of each contour. Wavelet coherence values ,1 indicate uncorrelated noise, a nonlinear
relationship between the velocity of T12 and T13, or that the processes influencing T12’s or T13’s velocity are not identical. In
panels (b) and (c), significant patches are defined as those that lie inside the solid black closed lines, which delineate patch area
remaining from an areawise test of patches defined by 95th estimated percentiles obtained from 1000 bootstrapped white-noise null-
model time series, delineated by dashed lines, while the cone of influence is delineated by the smooth, arched solid black line.
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Case study: Syncerus caffer

The second case study analyzes the time–frequency
properties and synchronicity in movement velocity of six

female African buffalo, also located in KNP. Locations
were sampled at an interval Dt ¼ 1 hour for all six

individuals, with a mean length of 131 days (see
Appendix: Table A1). Like many ruminants, African

buffalo in KNP make multiple behavioral switches
throughout the day (e.g., ruminating and foraging),

which are often related to temperature and resource
availability. The buffalo examined here exhibit a set of

behaviors that are typified by several (two or three)
relatively active periods each day, while the wavelet

transforms show that the strength of this activity pattern
is irregular in time (Appendix: Figs. A7–A12). Table 1

summarizes the amount of time spent in different daily
behavioral sequences based on the results of wavelet

analyses.
The fission–fusion social structure of buffalo in the

KNP (Cross et al. 2005) provides an opportunity to
illustrate the use of a wavelet coherence analysis to

investigate a connection between social proximity (i.e.,
grouped or separate) and synchronicity in movement
patterns, thereby isolating potential scales of movement

influencing factors and establishing a baseline measure
of synchrony between individuals. Here we focus on two

individuals with temporally overlapping data from 15
July 2005 through 29 October 2005, with wavelet

coherence analyses of other pairs producing similar
results and presented in the Appendix (Section 4).

A wavelet coherence analysis (Fig. 6 and Appendix:
Figs. A13–A17) coupled with an estimate of the distance

threshold at which significant coherence dissipates
(Appendix: Figs. A19–A22) shows that individual

velocity time series have a strong linear relationship
across their dominant periodogram frequencies at daily

scales and are highly synchronized in phase when the
individuals are within a distance of ;1 km, the

approximate diameter of a large herd. (Simulation
studies using the movement model suggest that the

coherence shown between the velocity time series for
individuals separated by ,1 km is highly unlikely to be a
result of random synchrony; see Appendix: Fig. A18.)

The scale at which this synchrony drops off suggests
herd-level behavioral cues have an important role for

movement relative to environmental cues. While land-
scape features are often one basis for models of

movement patterns (sensu foraging strategy literature)
and useful predictors of movement (e.g., location of

water in arid ecosystems), tradeoffs between foraging
and predation risk may be more salient to movement

behavior than typically recognized (Getz and Saltz 2008,
Hay et al. 2008). The results of our wavelet coherence

analyses suggest that investigation of behavioral hy-
potheses in addition to those driven by foraging strategy

(Ruckstuhl and Neuhaus 2002) are merited. Coupled
with more context-specific data, further analysis could

test environmental (predation risk or variation in forage

quantity and quality among neighboring patches) or

social (herd sex ratio and size) variables that explain the

coherence or lack thereof among individuals.

DISCUSSION

Frequency and time–frequency methods have several

strengths and limitations for better understanding

movement data. On the one hand, ecological interpre-

tation of significance in the frequency or time–frequency

domain is not always straightforward, and correlation in

the time and frequency dimensions challenges the

identification of hard boundaries at which the daily

behavioral sequence changes. However, motivated by

the positive results of our simulation study indicating

that the wavelet method is able to identify the timing

and extent of behavioral patterns not detectable by a

Fourier transform, autocorrelation function, or treat-

ment of data as independently and idenically distributed

(i.i.d.), we were able to extract new insights from several

rich, but statistically challenging, empirical GPS animal-

location data sets. Applied to the lion data, wavelet

methods provide an objective, quantitative basis for

partitioning data in a way other approaches assuming

stationarity in the data do not. This facilitated the

detection of a connection between nighttime brightness

and activity patterns. By incorporating wavelet ap-

proaches to identify temporal switches in cycling

behavior, such analyses can contribute to models for

kill-site determination (e.g., Franke et al. 2006, Webb et

al. 2008) by facilitating model development and

suggesting informative priors in estimating posterior

densities of complex models. Applied to the buffalo

data, the suite of analyses presented here reveals regular

within-day switching of behavioral modes and suggests a

role for social cues within herds as a mechanism for

synchronizing the movement of individuals separated by

up to 1 km. Time–domain and time–frequency analyses

can clearly contribute to a more nuanced understanding

of movement patterns than a priori assumptions of i.i.d.

random or low order correlated random-walk models,

and stimulate discussion about what poses as an

appropriate null model of movement.

Assessment of the spatial organization of wavelet

modulus values in both case studies failed to reveal

obvious unique locations associated with significant

scalogram values; developing techniques for assessing

spatio-temporal patterns based on the results of wavelet

analyses represent one area of possible future research.

However, the failure to identify locations uniquely

associated with significant scalogram values at biolog-

ically interpretable frequencies highlights an important

irony: as long-term, high-resolution data are gathered,

quantification of relationships between ecological co-

variates and movement will often require equally

detailed data on other individuals (both within and

across species), environment, immune status, or physi-

ology.
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The ability to identify time-dependent structure at

increasingly higher resolutions should be a cause for
encouragement and suggestion about which possible

covariates need closer examination. Recently, a wavelet-
based time-series-discrimination method has been devel-

oped by Rouyer et al. (2008) which classifies multiple
(more than two) time series which offer a method for
clustering groups of individuals based on shared time–

frequency properties. As further data become available,
we anticipate wavelet based approaches can be used to

improve understanding about the nature of interspecific
interactions, e.g., herbivores and plant phenology,

predator–prey, or predator–scavenger interactions.
Incorporating frequency and time–frequency based

methods into movement analyses has the potential to
contribute to future studies in several broader, comple-

mentary ways. Recent research (e.g., Jonsen et al. 2005,
Patterson et al. 2008) has included the use of state–space

models with parameter switching, a likelihood-based
statistical model that can accommodate behavioral

mode switching, important for testing the role of
spatially and temporally dependent covariates. By using
the statistical probes evaluated in this paper as a guide,

coupled with box plots of activity, ecologists may
increase their chances of proposing suitably flexible

models and computational strategies (e.g., parameter
bounds, informative priors) necessary to successfully

conduct statistical inference based on models with
complex likelihood functions. Random-walk models

connect theoretical mechanisms with patterns (Reynolds
and Rhodes 2009), and the use of time-series tools may

improve the accuracy of these models by providing data
partitioning based on statistically rigorous criteria.

Multiple methods of data analysis and presentation
may be the most useful approach for a robust analysis of

the emerging high-resolution empirical animal location
data.
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APPENDIX

Details on the Fourier and wavelet methods, additional details on the method of simulation, more extensive simulation studies to
evaluate issues of sampling interval size and to show that the results presented in Fig. 4 of the main text are not an artifact of the
particular movement trajectory used, additional analyses and results of the lion and buffalo data, and a table summarizing the
parameters used in the implementation of the frequency and time–frequency methods for each data set (Ecological Archives E091-
104-A1).
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