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Abstract. Understanding the environmental factors influencing animal movements is
fundamental to theoretical and applied research in the field of movement ecology. Studies
relating fine-scale movement paths to spatiotemporally structured landscape data, such as
vegetation productivity or human activity, are particularly lacking despite the obvious
importance of such information to understanding drivers of animal movement. In part, this
may be because few approaches provide the sophistication to characterize the complexity of
movement behavior and relate it to diverse, varying environmental stimuli. We overcame this
hurdle by applying, for the first time to an ecological question, a finite impulse–response
signal-filtering approach to identify human and natural environmental drivers of movements
of 13 free-ranging African elephants (Loxodonta africana) from distinct social groups collected
over seven years. A minimum mean-square error (MMSE) estimation criterion allowed
comparison of the predictive power of landscape and ecological model inputs. We showed that
a filter combining vegetation dynamics, human and physical landscape features, and previous
movement outperformed simpler filter structures, indicating the importance of both dynamic
and static landscape features, as well as habit, on movement decisions taken by elephants.
Elephant responses to vegetation productivity indices were not uniform in time or space,
indicating that elephant foraging strategies are more complex than simply gravitation toward
areas of high productivity. Predictions were most frequently inaccurate outside protected area
boundaries near human settlements, suggesting that human activity disrupts typical elephant
movement behavior. Successful management strategies at the human–elephant interface,
therefore, are likely to be context specific and dynamic. Signal processing provides a promising
approach for elucidating environmental factors that drive animal movements over large time
and spatial scales.
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INTRODUCTION

Linking movements of animals to underlying land-

scape features is critical to identify factors motivating

animal spatial behavior (Lima and Zollner 1996) and

resulting population spatial distributions (Turchin 1991,

Johnson et al. 1992). However, traditional approaches,

such as the well-established framework of Lagrangian

random walk and Eulerian diffusion processes, are

typically applied on either featureless or minimally

structured landscapes (Kareiva and Shigesada 1983,

Bergman et al. 2000, Edwards et al. 2007, Bartumeus et

al. 2008). Beyond simply relating movement to land-

scape characteristics, current research calls attention to

the importance of relating movement to temporal and

spatial dynamics of landscape features (Bowler and

Benton 2005, Mueller and Fagan 2008).

Understanding the relationship between landscape

dynamics and movement is particularly important to

wide-ranging species whose mobility can be critical for

persistence in the face of high temporal variability of

local food resources (Fryxell et al. 2005, 2008, Hebble-

white et al. 2008). Generally, foraging resources are

recognized as a predominant factor influencing move-

ment (Berger 2004), which for herbivores is increasingly

investigated using spatially and temporally specific

vegetation productivity indices (e.g., normalized differ-

ence vegetation index, NDVI; see Fryxell et al. 2005,
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Pettorelli et al. 2005, Hebblewhite et al. 2008, Mueller

and Fagan 2008). In addition to dynamics in forage

availability and quality, other landscape features may

shape movement and population distributions. Numer-

ous welfare factors are critical to animal population

persistence and strongly shape distributions (Simpson et

al. 2006, Holdo et al. 2009). At the same time, human

activity is increasingly a dominant feature of most

ecosystems (Sanderson et al. 2002), with roads frequent-

ly being identified as major barriers to animal movement

(Forman and Alexander 1998). Assessing the influence

of the variety of ecosystem components encountered by

mobile species is critical to gaining holistic understand-

ing of the determinants of animal movement and

resulting population distributions.

In this study, we explore the importance of multiple

static and dynamic landscape features for predicting

movement of free-ranging African elephants (Loxodonta

africana). African elephants range widely and can

exhibit multiple movement strategies within the same

ecosystem (Wittemyer et al. 2007a, 2008). Habitat

fragmentation and human incursions into historic

rangelands is a critical conservation issue impacting

the species across its range (Blanc et al. 2007). Yet little

analysis of the diversity of potential factors influencing

elephant movement strategies has been conducted (but

see Loarie et al. 2009). Here we investigate movement

paths collected over a seven-year period for 13 wild

African elephants that were the principal members of

social groups ranging in size from six to 19 individuals.

We use the ;0.5 million GPS positions that characterize

the movement tracks to study the influence of landscape

covariates including spatiotemporally dynamic NDVI

and proximity to static landscape features of water,

roads, and park boundaries.

Recent analytical advances that incorporate landscape

features directly in models of animal movement are

being applied more frequently (Preisler et al. 2004,

Dalziel et al. 2008, Getz and Saltz 2008, Patterson et al.

2008, Schick et al. 2008), though accounting for

dynamics at a fine scale is still relatively rare. Here we

introduce a novel approach using a signal-filtering

framework that allows study of the relationship between

animal movement and ecological landscape dynamics.

The approach is based on easy-to-interpret linear

correlations among model inputs, a construction similar

to movement path reconstruction using a Kalman filter

(Sibert et al. 2003, Lam et al. 2008, Royer and

Lutcavage 2008). Rather than focusing on error

correction, we construct a linear time series model that

predicts future movement pathways from a finite set of

past movement data and current values of pertinent

landscape covariates by minimizing the mean square

error (MSE) between the predicted (i.e., filtered) second-

order data statistics and observed second-order statistics

(Hayes 1996). Such models (also known as finite impulse

response Wiener filters) assess the relative importance of

past movement patterns and landscape covariates to

determine future movement pathways by quantifying

the strength of different signal components for move-
ment pattern prediction.

Application of linear filtering to movement data, as
presented here, tackles several fundamental questions in

the field of movement ecology (Patterson et al. 2008). (1)
To what extent do models that account for landscape

factors outperform simpler correlated random walk
(CRW) models, whether Gaussian or Lévy (Edwards
et al. 2007)? (2) What factors on the landscape influence

the movement of individuals at localized times and
points in space and how are they functionally related?

(3) How differentiated are individual movement re-
sponses to landscape characteristics? (4) What new

information is gained through predictive modeling of
movement that serves wildlife and biodiversity manage-

ment and conservation goals?

METHODS

Study site

Our analyses focus on the movements of elephants

inhabiting the Samburu and Buffalo Springs National
Reserves in northern Kenya. This semiarid region is
dominated by Acacia–Commiphora savanna and scrub

bush and the reserves are focused on the major
permanent water source in the region, the Ewaso N’giro

River (Barkham and Rainy 1976). Over the past 40
years, rainfall has averaged ;350 mm/yr, with the

majority falling during biannual rainy seasons generally
taking place in April and November (G. Wittemyer,

unpublished data). The reserves are not fenced and the
study elephants are free-ranging, moving in and out of

the reserves year round (Douglas-Hamilton et al. 2005,
Wittemyer et al. 2007a). Thus the movement paths

analyzed here are not restricted by fences or impassible
geographic barriers. The 13 elephants tracked represent

13 distinct social groups ranging in size from 6 to 19
individuals, and represent .25% of the resident

elephants using the study area (Wittemyer et al.
2009b). Separate analysis demonstrated that group
members are consistently in direct proximity (Wittemyer

et al. 2009b); therefore the movements of the tracked
individuals are assumed to represent the group’s

movements.

Movement data

Elephant movements were tracked using global

positioning system (GPS) collars, which collected GPS
positions at 15-min, 1-h, or 3-h time intervals (the latter

to conserve power during the last few weeks of a collar’s
life). GPS failures, low sampling resolution during

power-saving modes, and erroneous fixes accounted
for ,10% of expected hourly positions. Accuracy of

locations from GPS tracking data is typically within 5–
20 m, representing ,5% of the distance covered during
average hourly movements.

To obtain a measure of daily location, thereby

ameliorating differences in GPS sampling frequency
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and failures, we used the smallest ellipse that contained

all GPS points over the previous 24 h. These ellipses are

characterized by the longitude and latitude of the

centroid or center of motion (CoM), the lengths of the

major and minor axes, and the orientation (direction of

major axis: see Appendix: Fig. A1). For computational

efficiency, we omitted fitting the least informative

parameter: the minor axis. Because our analysis

emphasizes the average daily quality of behavior rather

than individual hour-to-hour movements, it is useful for

detecting seasonal or landscape factors that affect the

extent or direction of daily movements.

Data on landscape features

The underlying landscape features that we assessed as

drivers of movement behavior (question 2) were:

digitized locations of static features (protected area

boundaries, permanent watercourses, and major roads

converted to ‘‘distance from feature’’ raster maps at a

resolution of ;550 m or 0.0058); NASA digital elevation

data (Shuttle Radar Topographic Mission) at a spatial

resolution of 90 m (,0.0018); 10-day (three times per

month) composite time-specific NDVI values (Satellite

Probatoire d’Observation de la Terre systems); and a

location-specific seasonal index inferred from average

regional NDVI (Wittemyer et al. 2007b). In the model,

time-specific NDVI averages were computed over a 1-

km circle centered on the CoM location, and NDVI

averages over eight directional segments filling the area

between this inner 1 km and an outer 6-km circle were

computed (Appendix: Fig. A2).

In summary, the elephant movement data were

assumed to depend on the following 17-dimensional

landscape feature vector: (1) CoM latitude, (2) CoM

longitude, (3) length of long ellipse axis, (4) orientation

of ellipse axis, (5–13) one inner and eight outer NDVI

sectors, (14) distance to permanent water, (15) distance

to roads, (16) distance to protected area boundary, and

(17) ecosystem average NDVI (seasonal signal). Because

tracking data were not continuous for any single

elephant over the seven-year study, all time-dependent

data (NDVI or season) were collated to match each

elephant’s GPS data such that sections lacking position

data were excluded from these other time series data.

Finally, before any filtering, all data were normalized to

a common interval, [�1,1]. This was necessary to

facilitate the subsequent analysis of the filter structure

and comparison across individuals (question 3).

Signal-processing framework

Signal processing is a well-established data analysis

tool focusing on the predictive performance of model

input variables (Hayes 1996). We recorded the values of

the 17 signal inputs, represented by s[n], where the

square brackets indicate that the vector is sampled in

discrete time, in this case 500 hourly intervals indexed by

n; n is always a variable, so f [n] is a function of time,

where f [n¼ k] is the single scalar value that the function

f takes when evaluated at n¼ k. We selected 500 h (4 h

short of 3 weeks) for reasons elaborated in the Appendix

(Insights from model structure and Appendix: Fig. A3).

The approach also requires that we select a parameter p

that is the number of consecutive time points from the

signal s[n] (i.e., s[n¼ k], s[n¼ k� 1], . . . , s[n¼ k� pþ 1])

to predict a vector d[n¼ kþ 500] 500 h later. In our case,

d[n] is a four-dimensional characterization (CoM longi-

tude, CoM latitude, length of major axis, and orienta-

tion of major axis) of the smallest ellipse that contains

all the movement data for the 24-h period starting at

time n. Mathematically, d*[n¼k] is an estimate of d[n¼k

þ 500] (i.e., we use the superscript asterisk to emphasize

that we use data at time k� pþ 1, . . . , k, to predict data

at time k þ 500) computed from s[n] by convolving s[n]

with a finite impulse response filter, W[n]:

d�j ½n� ¼
XN

i¼1

Xp�1

k¼0

si½n� k�Wi; j½k� ð1Þ

where j¼1, . . . , 4 indexes the different elements of d*[n]; i

¼ 1, . . . , N indexes the different elements of s[n]; and the

sum over k performs the time convolution of the signal

component si with the appropriate component of the filter

W[n].Wewrite i going up toN because, in general, wemay

use a variable number of signals in order to make our

predictions (e.g., to see if anything is lost by excluding a

given signal). The filter W[n] is determined from the

second-order statistics of s[n] and d[n], chosen to minimize

the squared difference between the prediction, d*[n ¼ k],

and the actual future, d[n¼ kþ 500]. This calculation of

filter coefficients from statistical properties >of the signal

and the data is a standard method in stochastic signaling

processing and is described in detail in the Appendix. It

assumes that the autocorrelation and cross-correlation do

not change during the 500-h sampling interval, and that

the output data depend only on the difference in time

between when the signal is measured and the time for

which a prediction will be made.

Due to both computational constraints and to avoid

over-fitting filter coefficients, it is desirable to keep p as

small as possible. It is important, however, not to overly

constrain the model to an arbitrarily recent past if longer

timescale correlations are a driving component in the

underlying system. A systematic exploration of our data

indicated that p ¼ 5 (i.e., using the last five hours of

movement data) was sufficient for reasonable prediction.

For this choice of p, the dimensionality of the filter is

still two orders of magnitude smaller than the dimension

of the data, and prediction accuracy is similar to that

achieved with higher dimensional filters. All results

presented in the text use this value. Thus, in summary,

we use five consecutive hourly points of movement (i.e.,

the movement ellipse) and landscape data contained in

the 17-dimensional vector s[n] at times n¼ k� 4, . . . , k
to predict the four-dimensional movement data vector

d[n] alone at time n¼ kþ 500, where the movement data

vector is the smallest ellipse that contains the actual
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position point data of that individual for the 24-h period

starting at time n ¼ k. Therefore, we are predicting the

general location of the individual over a 24-h period of

time, not the actual GPS location on the landscape at a

specific hour.

Error calculation

Signal statistics are computed empirically from the

data in order to solve for the filter W[k] in Eq. 1. The

time histories of the 17 signal input parameters over 500

h were fed into the filter to predict the complete

trajectory of movement ellipses for the subsequent 500

h. Performance was assessed by taking the mean of the

squared difference between the recorded movement

ellipses and the predicted ellipses. Information regarding

further error normalization is provided in the Appendix.

Null model comparison and filter performance analyses

The performances of filters using various signal inputs

and applied across time and elephantswere comparedwith

that of a correlated random walk (CRW) model (address-

ing question 1): i.e., a stochastic process that had the same

‘‘distance moved’’ and correlated direction of heading

statistics as the time-specific data being fitted, but without

reference to landscape data or past position. Specifically,

x[n] ¼ Ax[n � 1] þ w, where x is the two-dimensional

displacement vector, w is a two-dimensional white

Guassian random number (with x and y variance chosen

to match the behavior of the elephant being represented),

and A is a diagonal matrix containing the x and y

correlation coefficients for displacement. The MSE per-

formance of thisCRWmodel provided the baseline against

which the MSE estimates (a measure of the predictive

capabilities) of the various filters were compared.

The MSE performances of the CRW null model were

also compared to the MSE performances of (1) filters

applied to noncontiguous sections of data from the same

elephant (e.g., filter fitted to movements from April

applied to predict movements in November), an objective

associated with question 2; and (2) filters applied across

different elephants (e.g., filters fitted to the movement of

one elephant applied to predict the movement of another

elephant), an objective associated with question 3. For

predictive performance comparison of filters fitted to

statistics of a particular period and applied to predict

movements at noncontiguous periods, application was
restricted in the following manner in order to investigate

underlying properties influencing predictive performance:

(1) no restrictions: any noncontiguous data; (2) time , 3:

data within 3 months of the original data; (3) time . 3:

data beyond 3 months of the original data; (4) similar

season: during seasonally similar periods (defined from

ecosystem average NDVI as periods when average NDVI

was within 0.2 of the normalized range of values during
the time when the filter was fitted), and (5) nearby: data

within a normalized distance of 0.2 of the original location

of data (see Appendix for details). In addition, MSE for

filter application across all possible combinations of these

restrictive categories was assessed. Direct analysis of the

possible relationship between landscape context and filter

performance was assessed by mapping the locations of

high prediction error (see Appendix for details).

RESULTS

Predictive performance of different Weiner filters

As a fundamental assessment of the efficacy of the

Weiner filter approach, we compared the predictive

power of a correlated random walk (CRW) model
(lacking any information on landscape context) to that

of Weiner filters with different signal inputs, thereby

addressing question 1 posited in the Introduction.

Regardless of signal input structure, the predictive

power of Weiner filters had median MSE fits that, on

average (across 13 elephants with fits in different seasons

and years), were more than an order of magnitude

smaller than fits of the CRW null model (Table 1).

Over large sections of the data set, our Weiner filter

provided credible predictions of actual 24-h movement

behaviors by filtering the signal variables from the
previous three weeks (Fig. 1). MSE estimates resulting

TABLE 1. Median and interquartile ranges (IQR) of normalized mean-square error (MSE) of predicted African elephant
movements from filters fitted to different combinations of input data, with associated input dimensions.

Input data

MSE of predicted d[n]
Input

dimension

MSE of predicted CoM (km)

Median IQR Median IQR

All 0.12 (0.12, 0.13) 17 1.21 (0.88, 1.43)
Previous movement 0.24 (0.20, 0.25) 4 2.20 (1.76, 2.97)
CoM 0.41 (0.36, 0.64) 2 2.64 (2.09, 3.74)
NDVI 0.23 (0.21, 0.27) 9 1.87 (1.54, 2.75)
Static features 0.23 (0.21, 0.28) 3 2.42 (2.20, 2.64)
Human 0.27 (0.22, 0.34) 2 2.42 (2.09, 3.30)
Water 0.40 (0.33, 0.61) 1 2.75 (2.20, 4.18)
Null model 3.40 (2.84, 4.91) 2 NA

Notes: Translation of normalized error to average error (in km) focusing exclusively on the center of mass (CoM) movement
output is presented. The best movement prediction (lowest MSE) was derived from the combination of all inputs. Predictions using
any signal input or combination of signal inputs exceeded those from the correlated random walk null model. NDVI is the
normalized difference vegetation index. The vector d[n] is a unitless, four-dimensional characterization (CoM longitude, CoM
latitude, length of major axis, and orientation of major axis) of the smallest ellipse that contains all the movement data for the 24-h
period starting at time n; square brackets indicate that the vector is sampled in discrete time.
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from the full Weiner filter were similar across elephants

(Appendix: Table A1); this indicated that, on average,

differences in home range size and extent of tracking

data did not affect predictive performance. In order to

calculate actual spatial accuracy of predictions, a

parallel analysis was conducted focusing exclusively on

non-normalized CoM estimation to allow calculation of

MSE in spatial units. Results showed that typical

predictions were off by ;0.88–1.43 km or ;20% of a

daily movement (Table 1). However, it is important to

note that predicting movement behavior from CoM

alone performs significantly worse than when using all

FIG. 1. Predicted vs. real movement patterns of African elephants, based on different signal data. (A) Predicted movement
paths of African elephants derived from linear Weiner filters (gray dots: 500 sequential hours of CoM [center of motion; see
Methods] produced by filters fitted to the preceding 500-h actual movement path and landscape data segments) were generally
similar to actual movement paths (black dots) during the predicted period when all signal inputs were used in filter construction. In
the lower panels (gray, predicted paths; black, actual paths), filters that predicted movement contained a subsection of the signal
inputs: (B) past movement only; (C) NDVI (normalized difference vegetation index) only; (D) anthropogenic landscape features
only; and (E) permanent water only. Mean-square error estimates (MSE) for the predicted movement paths (above each panel) are
similar to median values reported in Table 1, allowing visualization of approximate performance.
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four movement ellipse parameters (Wilcoxon rank sum:

Z¼ 4.3, n¼ 13, P , 0.001).

To address question 2 and evaluate the influence of

landscape features (i.e., filter signal inputs) on move-

ment prediction, MSE estimates of predictions made

using different filters were assessed independently and

compared (Fig. 2). The relative performance of the three

classes of signal inputs, previous movements (i.e.,

relying on autocorrelation signatures in movements),

static landscape features (permanent rivers, major

roads, and park boundaries), or NDVI provided similar

predictive performance (i.e., MSE values across inputs

were not significantly different) when averaged over time

(Appendix: Table A1); median results are presented in

Table 1. For any given set of predictions, however, the

MSE can vary considerably among these three signals

(see Appendix: Fig. A4), with periods when NDVI, past

movement, or landscape features are the predominant

correlate of movements and other periods when these

features do not independently exert any measurable

influence on movement behavior.

Predictive performance increased as multiple inputs

were combined, indicating that elephants react to a

combination of multiple sources of information on

landscape characteristics. For instance, performance of

the static landscape features decreased when human-

created landscape features (protected area boundaries and

major roads) and natural features (distance from perma-

nent water) were separated (Table 1). Also predictive

performance based onNDVI was not simply a function of

elephants moving to areas of higher NDVI (Appendix:

Fig. A5). In contrast to expectations and results derived

from different methods (Loarie et al. 2009), no significant

differences were found in the propensity to move to

local locations with higher, rather than lower, NDVI

(Wilcoxon signed-rank test: W¼ 1, n¼ 13, P¼ 0.954).

Applying filters across time, seasons, locations,

and elephants

To test the general applicability of filter structure

across time (addressing aspects of question 2), filters fitted

to statistics of a particular period were applied to predict

movements at all other noncontiguous periods in an

elephant’s data set (i.e., unmatched filters). Such analysis

provides a measure of the degree to which patterns

captured by a given filter are temporally specific.

Noncontiguous filters performed significantly worse than

contiguous filters, with an order of magnitude greater

MSE (Fig. 3: see Appendix: Fig A6 and Table A2).

Noncontiguous filter performance (MSE ¼ 2.78; Appen-

dix: Table A2) was slightly, but not significantly, better

than that of the null CRW model (MSE¼ 3.51; Table 1);

it should be noted that equitable comparison is difficult,

given that the null model performance is calculated for

statistics from data of contiguous periods rather than

across noncontiguous periods.

To address question 3, filters fitted to one elephant

were used to predict the movements of each other

elephant. MSE values of filters applied across different

elephants were significantly greater than MSE of

noncontiguous filters fitted to the parent elephant

(Wilcoxon signed-rank test: W ¼ 91, n ¼ 13, P ¼
0.0016; Fig. 3). This suggests that there are elephant-

specific response behaviors captured by each filter. If we

restricted comparisons to the same season (conditions

within 20% of the seasonal NDVI signals during

origination), the same approximate time (applying the

filter to data occurring within 3 months), or a similar

location (i.e., ‘‘nearby’’ defined as within 20% of the

elephant’s range) improvement in performance resulted.

Across such constraints, prediction error was consis-

tently lowest for filters applied to data from the parent

elephant (in contrast to a different elephant; Fig. 3),

indicating that elephant-specific behaviors captured by

the filter are not purely due to similarities in range or

FIG. 2. The best movement prediction (significantly lower
MSE) was derived from the combination of all signal inputs (all
factors) as shown by median and interquartile range (IQR, 25th
and 75th percentile) of the median MSE filter performance of the
13 elephants studied. Individual signal components of previous
movement, vegetation productivity (NDVI), and static landscape
features (roads, protected area [PA] boundaries, and permanent
water) did not differ significantly. Predictions using any signal
input or combination of signal inputs exceeded those from the
null model (Table 1: MSE ¼ 3.4) by an order of magnitude.
Outliers are defined as points that lie two times the distance
between the third and first quartiles beyond the quartile
boundaries (gray box; dots indicate the median MSE), and
whiskers extend to the farthest point not considered an outlier.
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temporal overlap. Simultaneous constraint of location,

season, and time resulted in the greatest reduction.

Spatial analysis of errors

Small intervals in which filter predictions were

completely inconsistent with actual movements occurred

infrequently. The locations of individuals during such

‘‘high error’’ intervals, however, were not randomly

distributed in space (Fig. 4). After normalizing for

density (correcting for the proportion of time that

animals spend in or out of the governmentally desig-

nated protected areas), ;70% of high errors occurred

outside protected areas (PA) (Fig. 4). Using a binomial

test, high errors were significantly (P , 0.01) more likely

to occur outside PA boundaries for six elephants. One

elephant demonstrated significantly more error within

protected areas, while the remainder showed higher

error outside the park, but not significantly (see

Appendix: Fig. A7 for error maps of individual

elephants). More strikingly, high errors clustered near

the park boundaries, and especially in regions immedi-

ately neighboring villages. Most of the villages were

never entered by the elephants (see ‘‘no-data’’ regions in

black; Fig. 4), but the greatest clustering of inaccurate

predictions was found to occur in the area overlapping

with a particular village that was traversed by elephants

moving in and out of the protected areas.

In addition to regions associated with human activity,

low prediction accuracy coincided with areas of in-

creased elevation and infrequent use. These results

indicate that, in addition to avoiding areas with steep

slopes (Wall et al. 2006), elephants exhibit qualitatively

different movement behavior when ascending or de-

scending and when traversing less familiar or avoided

areas. It is likely that incorporating local elevation as a

signal input would further improve prediction accuracy.

DISCUSSION

Predicting elephant movement

Although autocorrelation in movements was found to

dominate the variability in hourly movements (Wit-

temyer et al. 2008), this study demonstrates that external

stimuli exert greater influence over movement behaviors

on larger timescales (weeks). The diurnal rhythms of

elephants can be interpreted as somewhat constrained

(due to movement and rest cycles), but the weekly

excursion patterns resulting from varying environmental

motivations are more complex. Such complexity limits

the utility of CRW models to provide realistic predic-

tions of animal movements. In answer to question 1, a

filtering approach incorporating some information on

landscape context or past behavior offers predictive

power superior to that of a CRW model.

Elephant responses to the landscape

Addressing question 2, our approach provided a

powerful method to discern temporal and spatially

FIG. 3. Noncontiguous filter performance (portrayed as median and IQR of per elephant median MSE performance) increased
when application of the filter was restricted to predict data that were temporally similar (i.e., within 3 months; t), from the same
season, and near the location of the original data, with a combination of these three restrictions (‘‘all constraints’’) resulting in the
best fit. Application of filters fit to noncontiguous data from the same elephants (light gray) outperformed those applied across
elephants (i.e., filter fit to the movements of one elephant used to predict the movements of another elephant; dark gray), regardless
of restrictions. The performance of noncontiguous predictions without restrictions was not significantly different from that of the
null model (Wilcoxon signed-rank test: W ¼ 25, n ¼ 13, P ¼ 0.390), although performance when restricted in time, season, and
position was significantly better than that of the null (W¼ 61, n¼ 13, P¼ 0.035). Outliers and whiskers are as defined for Fig. 2.
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specific relationships between movements and their

ecological context. Importantly, our filtering approach

is adept at assessing the predictive power of both static

and dynamic features. Individual responses to landscape

features were found to vary across space and time, as

demonstrated by the relatively strong, but variable,

predictive power of NDVI, the dynamic covariate signal

input that has been shown to be a critical correlate of

migratory behavior in other systems (Fryxell et al.

2005). Considering that areas with high NDVI are likely

to have greater forage abundance or quality than areas

with lower NDVI (Pettorelli et al. 2005), optimal

elephant foraging strategies are hypothesized to result

in chasing relatively high NDVI regions (Loarie et al.

2009). Therefore, it was surprising that individual

strategies of movement in relation to NDVI varied

dramatically across the 13 elephants studied (Appendix:

Fig. A5) and movements were not significantly directed

to areas with relatively higher NDVI. The utility of

pursuing higher NDVI probably depends on dietary

focus (Cerling et al. 2009, Wittemyer et al. 2009a) and

vegetative structure (Young et al. 2009). Additionally,

foraging strategies and spatial use are known to vary in

relation to social factors (Wittemyer et al. 2007a,

Wittemyer et al. 2008), making the creation of a general

predictive framework complex.

Among static landscape features, distance to human

features (protected area boundaries and roads) provided

more information on movements than distance to

permanent water. Human activities and roads are

recognized to have dramatic effects on animal spatial

behavior (Forman and Alexander 1998), with elephant-

specific movement studies showing strong influences of

roads (in central Africa; Blake et al. 2008) and protected

area boundaries (Wittemyer et al. 2007a, 2008). The

relatively weak predictive power of distance to water

may relate more to the preprocessing of movements into

24-h summaries, subsuming the daily movements to and

from water, as the distribution and movement of water-

dependent elephants in the semiarid study system are

strongly shaped by water (Wittemyer et al. 2007a).

Differentiated individual movement strategies

The assessment of the uniformity of individual

behavior is critical to a predictive framework. Although

results from this study give insight to the relative

importance of covariates for predicting elephant move-

ment, information critical for in situ management, a

general elephant movement predictive filter is unlikely to

be effective. Specific to question 3, individual responses

to the same features varied in time and space, rendering

performance of a general filter weak, even when derived

FIG. 4. A composite map of the relative error of filter predictions across the 13 elephants in the study ecosystem, providing
insight to regions where unrecorded ecological features significantly impact elephant movements or nonlinear relationships between
movements and signal inputs exist. The color key shows relative frequency of error (MSE . 1.5). Interestingly, areas with high
error (warmer colors) typically occur near the unfenced protected area boundaries (green-outlined polygons) and in proximity to
human settlements (red open circles). Typically, elephants do not move directly through human settlement areas (black background
denotes no location data), with one exception where error rates were high. Areas with high human activity were correlated with
poor model predictions, suggesting that abnormal movements were associated with human encounters. Thin blue lines indicate the
permanent rivers, and red lines indicate the roads.
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from and applied to the same individual. Application of

a filter derived from one elephant to another provided

even less predictive utility. Elephants are complex

animals (Moss 1988, Shoshani 1998, Wittemyer et al.

2005), which probably results in the observed differen-

tiation in their responses to the same stimuli across time

and space. Considering that the 13 tracked elephants in

this study were part of larger groups, heterogeneity in

behavioral influences from the myriad of group partic-

ipants adds further complication to general predictions.

Species with greater constraints on their movement

strategies (e.g., navigation to a common target) or that

are reliant on interspecific coordination (e.g., selfish

herding) may be more amenable to general predictive

monitoring using this framework (Codling et al. 2007).

Insights from exploring properties of predictive error

Despite the inability to derive a general filter for

predicting elephant movement, mapping out error

values provided insight to important aspects of the

ecosystem not included in our model (e.g., topography)

and helped to identify factors, including human

habitation, that disrupt otherwise locally characterizable

movement patterns. Although the largest errors ap-

peared to be well-distributed in time, they were spatially

clustered near, but outside, protected area boundaries in

the open (unfenced) ecosystem. Previous work has

demonstrated shifts to nocturnal access of permanent

water outside protected areas in contrast to midday use,

when elephants are within protected areas, presumably

to avoid interference with humans and livestock

(Wittemyer et al. 2007a). Here we found that move-

ments of elephants in these human-dominated land-

scapes were much more difficult to predict, probably

because movement behavior was reactive to the pres-

ence, movements, and threats of humans and livestock

in such areas. This suggests that analysis of predictive

model error is a potentially powerful tool for identifying

areas in which a population faces threats (important for

land use planning and reserve design) or for identifying

factors that may be perturbing individuals.

A model framework that advances movement ecology

This study demonstrates that linear filtering offers a

statistically robust framework for addressing the eco-

logical questions posited in the Introduction that are

critical to understanding the connections between

environmental factors and movement behavior. The

approach also provides a general framework for

exploiting very large, multidimensional data sets in a

computationally efficient manner to probe such interac-

tions. Although state-space models, which explicitly

infer relationships through a process model, have been

lauded as the most promising approach for movement

ecological research (Patterson et al. 2008, Schick et al.

2008), signal processing as applied here provides a

correlative-based approach (bearing in mind that d[n]

represents a movement state vector) that is able to

reinforce and expand our understanding of movement

properties and their relationship to landscape variables

without any ab initio assumptions about the relevance

or effects of those landscape variables (necessary in the
state-space models described by Patterson et al. 2008).

By their ability to distinguish dominant environmental

covariates from peripheral ones, the signal-processing

class of models can provide a rigorous approach to

identifying factors that may then help to formulate more

mechanistically detailed state-space models in the future.
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APPENDIX

Computational implementation of data preprocessing, signal-processing framework, error calculation, and assessment of filter
performance across individuals and models, and discussion of biological insights from evaluation of model structure (Ecological
Archives E092-139-A1).

SUPPLEMENT

MATLAB analysis code (Ecological Archives E092-139-S1).
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Ecological Archives E092-139-A1 
Alistair N. Boettiger, George Wittemyer, Richard Starfield, Fritz Volrath, Iain 
Douglas-Hamilton, and Wayne M. Getz. 2011. Inferring ecological and 
behavioral drivers of African elephant movement using a linear filtering 
approach. Ecology 92:1648–1657.  
Appendix A. Additional details on the computational implementation of data pre-processing, the 
signal processing framework, error calculation, and the assessment of filter performance; 
discussion of biological insights gained from evaluation of the model structure; figures depicting 
both methods and results as referenced in the main document; and two tables containing 
empirical results of filter performance across individuals and models.  

 
Computational implementation of data pre-processing and filtering 
Additional description of input data processing 

A simple lookup table provided the distances from rivers, roads and park boundaries at 
any point as a single scalar value.  For prediction purposes we used only the elephant's absolute 
distance from any of these features.  Elevation was used only to exclude regions effectively 
inaccessible to elephants, based on previous work demonstrating the study elephants avoid high 
angle slopes (Wall et al. 2006).  Specifically, we modified our NDVI map to exclude data from 
all regions with greater than 20° slope, assuming the availability of resources and distance to 
other landscape features in these regions had no effect on elephant behavior. 

Assuming elephant do not have ubiquitous knowledge of ecological conditions in their 
environs, we only included NDVI values within a 6 kilometer radius of an elephant’s current 
position in our model. In order to remove data gaps (caused by missing data due to cloud cover 
or excluded in relation to slope) and limit processing requirements, these data were averaged in 
nine sub-sampled sectors defined as the area within a 1 km radius of the elephant’s position (i.e. 
the local conditions) and 8 equal radial sectors out to the 6  km radius boundary (i.e. the 
conditions in possible movement directions; Fig. A2).  Local vegetation scores compiled as the 
NDVI average values in the nine sectors were then included in the model as a nine dimensional 
vector.   

 

Signal processing framework extended 
In this section we explain in more detail the filtering prediction approach used.  This is an 
application of a general technique for predicting the future behavior of an unknown stationary 
stochastic process from the statistical information in the signal.  The basic theory for the discrete 
filter approach was laid down simultaneously by famous mathematicians Norbert Wiener and 
Andrey Kolmorgov in the 1940s.  A more detailed introduction to Weiner filtering and its 
traditional applications can be found in most advanced texts on signal processing, Hayes 1996 
provides an excellent treatment with the same notational conventions we employ.  Let d(t) be the 
real movement behavior.  Let s(t) be the signal input we can measure.  Define the linear estimate 
of the values time f in the future, of d(t+f) as the estimate d*(t).  We are looking for an optimal 
linear filter that will compute this value: 
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 𝑑∗(𝑡) = 𝐿[𝑑(𝑡 + 𝑓)|𝑠(𝑢),−∞ < 𝑢 < 𝑡]     (A.1) 

Here 𝐿[∙] denotes the linear estimator. By convention, the estimated quantity (the stochastic 
variable d) is listed before the | symbol and the given quantities and constraints for the estimation 
(the stochastic variable s at all previous times) are listed after.  If we insist that the filter is shift 
invariant, (depends only on the time of the observation s relative to the time at which we want to 
predict, rather than having explicit time dependence), the linear estimator can be written as a 
convolution:   

 𝑑∗(𝑡) = ∫ 𝑤(𝑢)𝑠(𝑡 − 𝑢)𝑑𝑢∞
0        (A.2) 

The task is to choose the function w(t) such that the expected (squared) difference between the 
prediction we make about the future, d*(t), and the actual movement characteristics in the future 
d(t+f), is minimized. We emphasize expected difference since both d and d* are random 
variables. 

 Let e(t)= d*(t)– d(t+f) be our error at time t.  We want to minimize the mean squared 
error, E[𝑒(𝑡)2] (where E[𝑥] = ∫ 𝑥𝑝(𝑥)𝑑𝑥∞

0 ), the expectation value of the random variable x 
defined by the probability density function p(x)).  This is achieved when the error, e(t) is 
orthogonal to the observations s(t).  A w(t) for which the error is still correlated with the input 
signals suggests that some of that error signal actually contains information we could be using in 
our prediction.  The function w(t) which satisfies this orthogonality criteria is called a Weiner 
filter. Mathematically we can write the orthogonality condition as, 

 E[𝑒(𝑡)𝑠(𝑡)] = 0        (A.3) 
substituting in for e(t) 

 E��𝑑∗(𝑡) − 𝑑(𝑡 + 𝑓)�𝑠(𝑡)� = 0      (A.4) 

and substituting Eq. A.2 into this 

 E�∫ 𝑤(𝑢)𝑠(𝑡 − 𝑢)𝑑𝑢 − 𝑑(𝑡 + 𝑓)𝑠(𝑡)∞
0 � = 0    (A.5) 

The expectation operator is linear and we can distribute it over the arguments and change the 
order with the integration, resulting in   

 ∫ 𝑤(𝑢)E[𝑠(𝑡 − 𝑢)𝑠(𝑡)]𝑑𝑢 − E[𝑑(𝑡 + 𝑓)𝑠(𝑡)] = 0∞
0   (A.6) 

E[𝑠(𝑡 − 𝑢)𝑠(𝑡)] is just the auto correlation in s, rs(t-u), and E[𝑑(𝑡 + 𝑓)𝑠(𝑡)] is the cross 
correlation rds(t+f).  So we can rewrite Eq. A.6 as: 

 ∫ 𝑤(𝑢)𝑟𝑠(𝑡 − 𝑢)𝑑𝑢 = 𝑟𝑑𝑠(𝑡 + 𝑓)∞
0      (A.7) 

Equations of this form are called Weiner-Hopf equations.  rds and rs can be computed from the 
statistics of the measurements s, and the movements, d, and therefore Eq. A.7 can be solved for 
the optimal w.  The solution approach for this continuous time predictive Weiner filter can be 
found in many standard texts on statistical signal processing, (eg. Hayes 1996).   

 Since we have real data sampled at discrete intervals the convolutions can be written as 
sums.  If we restrict the filter to only using signals from time t-p until now, (i.e. p samples ago 
rather than from – infinity ago), these become finite sums and can be written as matrix products.  
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d[n] = w[k]s[n − k]

k=0

p−1

∑        (A.8) 

Solving the discrete Wiener-Hopf equations (A.8) for w defines the optimal linear filter we are 
seeking.  There are several ways this can be done, for computational efficiency we rephrase Eq. 
A.8 as a matrix equation which can then be solved by matrix inversion.     

 The derivation also readily generalizes to multidimensional signal inputs, s[n] and 
multidimensional data d[n], where the components of d[n] (e.g. x-centroid of movement, angle 
of movement) are indexed by j and the components of the signal (e.g. vegetation, distance from 
water, previous movement) are indexed by i. 

 

dj[n] = Wi, j[k]si[n − k]
k

p−1

∑
i=1

N

∑        (A.9) 

To solve the discrete, multidimensional Weiner-Hopf equations in (A.9), we rewrite this 
equation in matrix form.  Eq. A.9 is the same as Eq. 1 in the main text.  Choosing p=5, for 
reasons elaborated below, and N=17 (using all available signals) gave the best results.    

 

Let W* be a pN x 4  with 4 columns for each of the 4 movement characteristics j, defined as:  

 𝐖𝑗
∗ = ��𝑊1𝑗[𝑘] …𝑊𝑁𝑗[𝑘]�… �𝑊1𝑗[𝑘 − 𝑝]K𝑊𝑁𝑗[𝑘 − 𝑝]��

𝑇
   (A.10) 

for columns j=1:4. Note the time dependence of W[n] has been re-arranged into the explicit 
elements of the larger matrix W*, whose components are not time dependent variables. Let Rs be 
a pN x pN matrix, which is an N x N array of p x p sub matrices for the autocorrelations and 
cross correlations of the signals evaluated for separations of up to p.  Finally, let Rds be a pN x 4 
matrix where the columns again correspond to each of the movement characteristics, j, as for W*, 
and each p entries correspond to the discretely sampled cross correlation of characteristic j with 
input signal i=1:N.   Each of the j columns is therefore: 

 [𝐑𝑑𝑠]𝑗 = ��𝑟𝑑𝑗𝑠1[𝑘] … 𝑟𝑑𝑗𝑠𝑁[𝑘]�… �𝑟𝑑𝑗𝑠1[𝑘 − 𝑝]K𝑟𝑑𝑗𝑠𝑁[𝑘 − 𝑝]��
𝑇

  (A.91) 

for columns j=1:4.  Then the multidimensional sum in equation (A.9) can be readily written as 
the matrix product, RsW* = Rds,  from which W* is readily solved by inverting Rs and 
multiplying through by that result: 

 W* = Rs
-1Rds          (A.102) 

From which the coefficients of W[k] can be read out following Eq. A.10. 

 

Error calculation details extended 
Filter performance was assessed through the calculation of the mean squared error (MSE) of the 
position of predicted movements relative to actual movements. Because signal power varied over 
time, MSE was normalized by the root power of the signal (i.e. standard deviation). As a result 
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of these normalization processes, MSE units are not directly translatable to a straight metric of 
spatial accuracy (i.e. the difference in meters of predicted from actual movements).  Therefore, 
comparisons represent relative differences in performance.  In order to provide a conceptual 
understanding of filter performance, simplified representation of predictive movement error is 
presented in the form of the actual spatial error (km) of the CoM. In order to do this, CoM error 
is calculated independently from the other movement parameters and presented alongside the 
normalized error for the overall filter in Table 1.  Comparison of representative predictions and 
actual movements that correspond to the median MSE are shown in Fig. 1.  

 

Additional information regarding assessment of filter performance 
Comparison within and across elephants was restricted in relation to absolute time, season, 
and/or location. Restrictions in relation to time were straightforward. Restrictions in relation to 
season or NDVI were conducted simply by requiring the NDVI value for the starting point of the 
elephant whose movement we aimed to predict with a different filter was within 20% of the 
relative range of the NDVI  value for the starting point of the dataset from which the filter was 
constructed (e.g. if the NDVI data is normalized from 0 to 1, the difference in the NDVI values 
could be no more than 0.2).  For the location-based restriction, the distance between the two 
starting data points had to be within 20% of the total latitude and longitudinal range visited by 
any of the 13 elephants in our data set.   Differences in data sets across the elephants limited the 
application of filters across elephants at the same time, with samples sizes of a 'same time 
different elephant' analysis varying widely across pairs with multiple pairs lacking any 
comparison. Therefore, results of such an analysis were not presented. In addition, certain 
similarity constraints between the datasets for a given pair of elephants had little or no overlap.  
If the amount of overlapping data was less than 25% of the median number of overlapping data 
sets for that set of criteria, the results were excluded as not statistically robust. 

 To test for possible relationships between local landscape features and locations where 
filter predictions are generally poor, we divided the study region into 100 x 100 meter grid 
sections.  Within each section, we computed the number times an elephant was present and a 
motion prediction was made, and the number of times the prediction had significant error.  The 
number of errors was normalized by the number of total predictions made in each section, and 
recorded as the error density.  Results were plotted in a linear colormap where red indicates the 
highest error rate observed, blue the lowest, and black indicates no data.  The choice of the cutoff 
for ‘significant error’ was defined as MSE of 1.5, a level which exceeds the performance of a 
random walk but nonetheless shows considerable deviation from the average prediction using all 
environmental inputs.  Different error cutoffs affected the data density and statistical confidences 
in the resulting error map, rather than the spatial pattern of errors (see Fig. A8 for error map with 
error as greater than MSE 2.7).   

 

Insights from Model Structure 
Our use of the Wiener filter illustrates how scales of analysis can be bridged (a focus of some 
research, e.g. Fryxell et al. 2008) by taking data that has already been analyzed in the context of 
diurnal autocorrelation patterns recognized to dominate variance in hourly movements 
(Wittemyer et al 2007) and compressing it into a daily representation. This was accomplished not 
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simply as a single average location, but through the device of a bounding ellipse characterized by 
four parameters. As such, the computational burden of using the raw data itself was reduced, but 
information about the directionality and dispersion of the daily movement was retained.  
Similarly, our reduction of NDVI information using an inter-spoke and wheel approach also 
reduced the computational burden of our approach. These preprocessing steps thereby allowed us 
to focus on larger scale movement properties and provided comprehensive assessment of the 
performance of our models in several different contexts (e.g. across time and space, and among 
individuals).  

 The temporal efficiency of filter fitting and prediction was compared across input and 
predictive data scales of four orders of magnitude (from 10s tens to 10000s of hours; Fig. A3). 
Optimal performance occurred at around 6 weeks (500 hours for preprocessing and 500 hours for 
prediction). Filter fits at shorter time intervals did not perform well, while non-stationarity in 
longer-term datasets degraded longer period performance.  Short-term shifts in foraging/land-use 
strategies potentially drive inaccurate estimates of correlation functions at this temporal 
resolution, as occurred when an elephant went in and out of the protected areas (Fig. 4).  
Similarly, non-stationary movement behavior at longer time scales (2+ months) reduced 
predictability, probably in relation to ecological changes in the biannual rainy season system (dry 
to wet transitions are graded over 3 month periods) and resulting range shifts (Wittemyer 2008). 
As such, this approach provided reasonably good insights regarding the correlates of movement 
at monthly time scales, but the implementation of this method to predict and understand 
covariates driving movement across seasonal or annual transitions appears limited.   
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Fig. A1 
G.P.S. data were preprocessed to reduce the dimensionality of the movement input data in the 
Weiner filter model. All G.P.S. points recorded during each 24 hour period were simplified into 
a four parameter characterization of the daily movement consisting of the x and y coordinates of 
the center of mass, and the length and angle of the long axis of the minimum ellipse capturing all 
data in the 24 hour periods. 
 

 
 

 
 
 
Fig. A2. 

 A  Normalized Differential Vegetation Data (NDVI) were preprocessed to reduce the 
dimensionality of the vegetation dynamic input data in the Weiner filter model.  B For each 24 
hour moving window, NDVI within a 6 km radius of the center of mass was characterized as a 
nine parameter vector, g.  C Each component of g represents the average value within a 1 km 
radius centroid and 8 equal sized sectors radiating from the centroid to the bounding circle 
perimeter.  
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Fig. A3 
Filter performance varied in relation to the amount of data input in the model. Optimal 
performance for the filter containing all signal inputs occurred using 1000 hours of data. The 
optimal amount of data varied slightly across specific input signals. 
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Fig. A4 
 Relative contributions, ri, of past movement history, NDVI, and static features to model 
predictions for Anastasia.   Computed as  

ri =
MSEi

−1

MSEi
−1

i
∑

 

Note on a short time scale movement predictions are frequently dominated by one or two signals, 
and the others hold little predictive information.  A similar degree of variation in predictive 
values is seen in the data for the other elephants.   

 
 

 

 

time block (in 500 hr sections) 

relative 
importance 
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Fig. A5 
The influence of dynamic vegetation productivity (as recorded by remotely sensed NDVI) was a 
key signal input in the Wiener filter. A histogram for each of the 13 elephants and all in 
combination (last panel) shows the relative frequency elephant movements remained in the same 
sector (left column) or moved to areas with differing relative NDVI values (second column to 
left is the sector with the highest NDVI progressing to the sector with the lowest NDVI to the 
right). The 8 sectors and NDVI ranking scheme are indicated in the inset, bottom right.  The 
relationship between elephant movements and NDVI was dynamic, and showed marked 
differences across individuals. Some individuals demonstrated directed movements to higher 
NDVI while others show no in relation to NDVI. 
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Fig. A6 
Predictive performance of filters applied randomly or with time, season, and spatial constraints 
rather than applied to consecutive 500 hour period. Filter performance was greater when applied 
to the elephant from which it originated, with performance decreasing by ~30% when applied to 
a different elephant. Constraining the filter such that it was applied to data collected within 3 
months (Time < 3), at relatively similar locations (Nearby: within 0.2 of normalized distance 
values) and under similar seasonal conditions (Season: < 0.2 on normalized NDVI scale) 
increased performance. 
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Fig. A7 
Spatial error map with cut off equal to MSE of 2.7, a threshold value approaching the average 
performance of the null model. Results are qualitatively similar to those shown in the main body 
indicating the location and density of error was not a function of the threshold chosen in this 
analysis.   
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Fig. A8 
Spatial error map of each individual elephant for which the combination is presented in Fig. 4. 
Different individuals demonstrates stark differences in ranging patterns and, in relation, the 
location of predictive error. Individuals which were found almost exclusively within protected 
areas typically demonstrate the greatest error within the PA boundaries (e.g. Aztec and Maua), 
though Goya shows the opposite relationship. Most other individuals demonstrate higher error 
outside PA boundaries, the specific location of which appeared to relate to the overlap between 
human activity and their home range. 
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 Table A1 
The (normalized mean square error (MSE) of movement predictions across the 13 elephants 
were qualitatively similar.  While elephants were tracked for different durations, tracking data 
covered different years and season, and movements were focused on different areas in the 
ecosystem, the best movement prediction (lowest MSE) was derived from the combination of all 
inputs regardless of elephant. Predictions using any signal input or combination of signal inputs 
exceeded those from the null model by an order of magnitude. 

 

  All Movement COM NDVI Static Human Water 

Goya 0.132 0.209 0.674 0.194 0.227 0.240 0.297 

Maya 0.119 0.221 0.409 0.209 0.195 0.243 0.384 

Stratus 0.116 0.242 0.367 0.253 0.493 0.377 0.427 

Ngalatoni 0.133 0.238 0.388 0.348 0.277 0.298 0.615 

Neptune 0.132 0.252 0.522 0.267 0.231 0.261 0.789 

Aztec 0.119 0.240 0.721 0.254 0.518 0.326 0.333 

Maua 0.131 0.245 0.389 0.192 0.210 0.219 0.806 

Amina 0.123 0.298 0.523 0.237 0.269 0.341 0.601 

Ndorobo 0.122 0.209 0.365 0.172 0.236 0.774 0.375 

Monsoon 0.133 0.242 0.349 0.264 0.194 0.270 0.462 

Jerusalem 0.119 0.206 0.495 0.191 0.210 0.206 0.290 

Rosemary 0.115 0.210 0.339 0.195 0.256 0.285 0.400 

Anastasia 0.130 0.304 0.643 0.285 0.234 0.222 0.378 
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Table A2   
Numerical values corresponding to Fig. A6, showing the predictive performance of filters 
applied randomly or with time, season, and spatial constraints rather than applied to consecutive 
500 hour period.  Here ‘self’ indicates that only filters made with data from elephant E are were 
used in predicting motion of elephant E.   

 

 

Constraints 
Self 

Median (IQR) 

Across Elephant  

Median (IQR) 

No restrictions 2.78 (1.52, 5.14) 3.53 (2.15, 6.69) 

Time>3  2.98 (1.51, 5.42) 3.69 (2.19, 6.69) 

Time<3  1.82 (1.41, 6.12) 3.22 (1.50, 5.18) 

Season  2.26 (1.03, 5.42) 2.81 (1.86, 6.00) 

Nearby (<20%) 1.56 (1.03, 2.99) 2.67 (1.42, 3.50) 

Season, Position 1.39 (0.92, 2.02) 2.28 (1.32, 3.18) 

Time>3, Season, Position 1.42 (0.92, 3.04) 2.23 (1.33, 3.01) 

Time<3, Season 1.80 (1.03, 5.39) 3.09 (1.43, 5.07) 

Time<3, Position 1.57 (0.80, 3.42) 2.35 (1.27, 3.26) 

Time<3, Season, Position 1.54 (0.71, 3.88) 1.69 (1.08, 2.42) 

Null Model 3.51 (2.98,5.71 )  
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movement using a linear filtering approach 

 
Alistair Boettiger, George Wittemyer, Richard Starfield, Iain Douglas-Hamilton, Fritz Volrath, 
Wayne M. Getz 
 
The Appendix contains the Matlab code for implementing the primary signal processing analysis 
using a Weiner filter. Additional code for the analyses implemented in the manuscript is 
available upon requests from the authors: 
: 
 
    %=================================================================% 
    %                        Wiener Filter                            % 
    %=================================================================% 
 % Functionally Complete                            Last Modified: 08/21/09 
 % 
 % Wiener_filter_compsig.m 
 % 
 % loads data of normalized movement stats and normalized NDVI, chopped 
 % into continuous time sections of a no more than the chosen segment 
 % length (eg 1000 hours).  The first half of the data is used for choosing 
 % the filter coefficients and the second half is used for evaluating 
 % performance.   
 %  
 % E3i8  E10ss12 
 %  
  
  clear all; 
   
   
names = {'Goya','Maya','Stratus','Ngalatoni','Neptune','Aztec','Maua',... 
 'Amina','Ndorobo','Monsoon','Jerusalem','Rosemary','Anastesia'}; 
   
    K=13; % number of pachyderms 
    M=5; % number of taps to use in Wiener filter 
    Q=4; % number of output dimensions to predict 
    relw = zeros(9,K); % average relative weights.  in classes x elephants 
  
    ErrT = zeros(K,8);  
    ErrM = zeros(K,8);  
    ErrT2 = zeros(K,8);  
    ErrM2 = zeros(K,8);  
    ErrT3 = zeros(K,8);  
    ErrM3 = zeros(K,8);  
    Err_data = cell(8);  
     



     
 for E= 1:K % 1:K 
   load(['E_all3_', num2str(E), '_wiener']);  
    S=length(sys_dat);    [Nt P] = size(sys_dat{1}); 
    ws = zeros(S,P); val = zeros(1,S); 
  
 Err = zeros(S,8);  
Err2 = zeros(S,8);  
Err3 = zeros(S,8);  
  
  
 % mse = NaN*ones(S,Q); % reinitialize data array 
 for ss= 1:S % loop over sectors  
     % ~~~~~~~~Filter using random input signals~~~~~~~~~~~~~~~~~~~~~% 
     % Seperate input and output 
        [Nt P] = size(sys_dat{ss}); 
        N = 2*floor(floor(Nt/2)/2); %split data set in half. N must be even 
        X = rand(N,9); 
        Y = sys_dat{ss}(end-N+1:end,1:Q);        
% Initialize some Wiener Filter Parameters 
[N,P]=size(X); [No,Q]=size(Y); W=zeros(M*P,Q); y_rand = zeros(No,Q); 
% =============Start computing autocorrelation matrices================ % 
    RX = xcorr(X,N/2,'unbiased'); R_X = {}; % compute correlation functions 
    for i=1:P^2 % stack correlation functions into block Toeplitz corr. 
matrices  
          j= 1+floor((i-.2)/P); 
          k =1+ mod(i-1,P) ; 
         R_X{j,k} = toeplitz(RX(N/2+1:N/2+M,i)); 
    end 
    R_X = cell2mat(R_X); % convert into big matrix.  
          % figure(7); imagesc(R_X); colorbar;  
    for q=1:Q % loop over output dimensions 
        R_iy = zeros(P,M); 
        for i=1:P % loop over input dimensions 
            [c_iy, lags] = xcorr(X(1:No,i),Y(:,q),No/2,'unbiased') ; 
            R_iy(i,:) = flipud(c_iy(No/2+2:No/2+M+1)); 
        end     
            r_iy = reshape(R_iy',P*M,1)'; % cross correlation fxn 
            W(:,q) =  (r_iy/R_X)';  % compute Weiner Filter Coefficients 
        for i=1:P % loop over input dimensions 
            y_t = conv(X(1:No,i),W(1+(i-1)*M:i*M,q)); 
            y_rand(:,q) = y_rand(:,q) + y_t(M:end); % actual prediction 
        end        
   end    % end loop over q 
% ===================================================================== % 
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~% 
      
      
% ~~~~~~~~Filter using just MOVEMENT input signals~~~~~~~~~~~~~~~~~~~~~% 
     % Seperate input and output 
        [Nt P] = size(sys_dat{ss}); 
        N = 2*floor(floor(Nt/2)/2); %split data set in half. N must be even 
        X = sys_dat{ss}(1:N,1:4); 
        Y = sys_dat{ss}(end-N+1:end,1:Q);        
% Initialize some Wiener Filter Parameters 
[N,P]=size(X); [No,Q]=size(Y); W=zeros(M*P,Q); y_mov = zeros(No,Q); 



% =============Start computing autocorrelation matrices================ % 
    RX = xcorr(X,N/2,'unbiased'); R_X = {}; % compute correlation functions 
    for i=1:P^2 % stack correlation functions into block Toeplitz corr. 
matrices  
          j= 1+floor((i-.2)/P); 
          k =1+ mod(i-1,P) ; 
         R_X{j,k} = toeplitz(RX(N/2+1:N/2+M,i)); 
    end 
    R_X = cell2mat(R_X); % convert into big matrix.  
          % figure(7); imagesc(R_X); colorbar;  
    for q=1:Q % loop over output dimensions 
        R_iy = zeros(P,M); 
        for i=1:P % loop over input dimensions 
            [c_iy, lags] = xcorr(X(1:No,i),Y(:,q),No/2,'unbiased') ; 
            R_iy(i,:) = flipud(c_iy(No/2+2:No/2+M+1)); 
        end     
            r_iy = reshape(R_iy',P*M,1)'; % cross correlation fxn 
            W(:,q) =  (r_iy/R_X)';  % compute Weiner Filter Coefficients 
        for i=1:P % loop over input dimensions 
            y_t = conv(X(1:No,i),W(1+(i-1)*M:i*M,q)); 
            y_mov(:,q) = y_mov(:,q) + y_t(M:end); % actual prediction 
        end        
   end    % end loop over q 
% ===================================================================== % 
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~% 
  
% ~~~~~~~~Filter using just COM input signals~~~~~~~~~~~~~~~~~~~~~% 
     % Seperate input and output 
        [Nt P] = size(sys_dat{ss}); 
        N = 2*floor(floor(Nt/2)/2); %split data set in half. N must be even 
        X = sys_dat{ss}(1:N,1:2); 
        Y = sys_dat{ss}(end-N+1:end,1:Q);        
% Initialize some Wiener Filter Parameters 
[N,P]=size(X); [No,Q]=size(Y); W=zeros(M*P,Q); y_com = zeros(No,Q); 
% =============Start computing autocorrelation matrices================ % 
    RX = xcorr(X,N/2,'unbiased'); R_X = {}; % compute correlation functions 
    for i=1:P^2 % stack correlation functions into block Toeplitz corr. 
matrices  
          j= 1+floor((i-.2)/P); 
          k =1+ mod(i-1,P) ; 
         R_X{j,k} = toeplitz(RX(N/2+1:N/2+M,i)); 
    end 
    R_X = cell2mat(R_X); % convert into big matrix.  
          % figure(7); imagesc(R_X); colorbar;  
    for q=1:Q % loop over output dimensions 
        R_iy = zeros(P,M); 
        for i=1:P % loop over input dimensions 
            [c_iy, lags] = xcorr(X(1:No,i),Y(:,q),No/2,'unbiased') ; 
            R_iy(i,:) = flipud(c_iy(No/2+2:No/2+M+1)); 
        end     
            r_iy = reshape(R_iy',P*M,1)'; % cross correlation fxn 
            W(:,q) =  (r_iy/R_X)';  % compute Weiner Filter Coefficients 
        for i=1:P % loop over input dimensions 
            y_t = conv(X(1:No,i),W(1+(i-1)*M:i*M,q)); 
            y_com(:,q) = y_com(:,q) + y_t(M:end); % actual prediction 
        end        
   end    % end loop over q 



% ===================================================================== % 
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~% 
  
  
  
  
% ~~~~~~~~Filter using just NDVI input signals~~~~~~~~~~~~~~~~~~~~~% 
     % Seperate input and output 
        [Nt P] = size(sys_dat{ss}); 
        N = 2*floor(floor(Nt/2)/2); %split data set in half. N must be even 
        X = sys_dat{ss}(1:N,9:end-1);% NDVI inputs 
        Y = sys_dat{ss}(end-N+1:end,1:Q);        
% Initialize some Wiener Filter Parameters 
[N,P]=size(X); [No,Q]=size(Y); W=zeros(M*P,Q); y_ndvi = zeros(No,Q); 
% =============Start computing autocorrelation matrices================ % 
    RX = xcorr(X,N/2,'unbiased'); R_X = {}; % compute correlation functions 
    for i=1:P^2 % stack correlation functions into block Toeplitz corr. 
matrices  
          j= 1+floor((i-.2)/P); 
          k =1+ mod(i-1,P) ; 
         R_X{j,k} = toeplitz(RX(N/2+1:N/2+M,i)); 
    end 
    R_X = cell2mat(R_X); % convert into big matrix.  
          % figure(7); imagesc(R_X); colorbar;  
    for q=1:Q % loop over output dimensions 
        R_iy = zeros(P,M); 
        for i=1:P % loop over input dimensions 
            [c_iy, lags] = xcorr(X(1:No,i),Y(:,q),No/2,'unbiased') ; 
            R_iy(i,:) = flipud(c_iy(No/2+2:No/2+M+1)); 
        end     
            r_iy = reshape(R_iy',P*M,1)'; % cross correlation fxn 
            W(:,q) =  (r_iy/R_X)';  % compute Weiner Filter Coefficients 
        for i=1:P % loop over input dimensions 
            y_t = conv(X(1:No,i),W(1+(i-1)*M:i*M,q)); 
            y_ndvi(:,q) = y_ndvi(:,q) + y_t(M:end); % actual prediction 
        end        
   end    % end loop over q 
% ===================================================================== % 
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~% 
  
  
  
% ~~~~~~~~Filter using just Static input signals~~~~~~~~~~~~~~~~~~~~~% 
     % Seperate input and output 
        [Nt P] = size(sys_dat{ss}); 
        N = 2*floor(floor(Nt/2)/2); %split data set in half. N must be even 
        X = sys_dat{ss}(1:N,6:8); 
        Y = sys_dat{ss}(end-N+1:end,1:Q);        
% Initialize some Wiener Filter Parameters 
[N,P]=size(X); [No,Q]=size(Y); W=zeros(M*P,Q); y_stat = zeros(No,Q); 
% =============Start computing autocorrelation matrices================ % 
    RX = xcorr(X,N/2,'unbiased'); R_X = {}; % compute correlation functions 
    for i=1:P^2 % stack correlation functions into block Toeplitz corr. 
matrices  
          j= 1+floor((i-.2)/P); 



          k =1+ mod(i-1,P) ; 
         R_X{j,k} = toeplitz(RX(N/2+1:N/2+M,i)); 
    end 
    R_X = cell2mat(R_X); % convert into big matrix.  
          % figure(7); imagesc(R_X); colorbar;  
    for q=1:Q % loop over output dimensions 
        R_iy = zeros(P,M); 
        for i=1:P % loop over input dimensions 
            [c_iy, lags] = xcorr(X(1:No,i),Y(:,q),No/2,'unbiased') ; 
            R_iy(i,:) = flipud(c_iy(No/2+2:No/2+M+1)); 
        end     
            r_iy = reshape(R_iy',P*M,1)'; % cross correlation fxn 
            W(:,q) =  (r_iy/R_X)';  % compute Weiner Filter Coefficients 
        for i=1:P % loop over input dimensions 
            y_t = conv(X(1:No,i),W(1+(i-1)*M:i*M,q)); 
            y_stat(:,q) = y_stat(:,q) + y_t(M:end); % actual prediction 
        end        
   end    % end loop over q 
% ===================================================================== % 
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~% 
  
  
  
% ~~~~~~~~Filter using just HUMAN input signals~~~~~~~~~~~~~~~~~~~~~% 
     % Seperate input and output 
        [Nt P] = size(sys_dat{ss}); 
        N = 2*floor(floor(Nt/2)/2); %split data set in half. N must be even 
        X = sys_dat{ss}(1:N,[6,8]); 
        Y = sys_dat{ss}(end-N+1:end,1:Q);        
% Initialize some Wiener Filter Parameters 
[N,P]=size(X); [No,Q]=size(Y); W=zeros(M*P,Q); y_hum = zeros(No,Q); 
% =============Start computing autocorrelation matrices================ % 
    RX = xcorr(X,N/2,'unbiased'); R_X = {}; % compute correlation functions 
    for i=1:P^2 % stack correlation functions into block Toeplitz corr. 
matrices  
          j= 1+floor((i-.2)/P); 
          k =1+ mod(i-1,P) ; 
         R_X{j,k} = toeplitz(RX(N/2+1:N/2+M,i)); 
    end 
    R_X = cell2mat(R_X); % convert into big matrix.  
          % figure(7); imagesc(R_X); colorbar;  
    for q=1:Q % loop over output dimensions 
        R_iy = zeros(P,M); 
        for i=1:P % loop over input dimensions 
            [c_iy, lags] = xcorr(X(1:No,i),Y(:,q),No/2,'unbiased') ; 
            R_iy(i,:) = flipud(c_iy(No/2+2:No/2+M+1)); 
        end     
            r_iy = reshape(R_iy',P*M,1)'; % cross correlation fxn 
            W(:,q) =  (r_iy/R_X)';  % compute Weiner Filter Coefficients 
        for i=1:P % loop over input dimensions 
            y_t = conv(X(1:No,i),W(1+(i-1)*M:i*M,q)); 
            y_hum(:,q) = y_hum(:,q) + y_t(M:end); % actual prediction 
        end        
   end    % end loop over q 
% ===================================================================== % 
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~% 



  
  
  
  
% ~~~~~~~~Filter using just WATER input signals~~~~~~~~~~~~~~~~~~~~~% 
     % Seperate input and output 
        [Nt P] = size(sys_dat{ss}); 
        N = 2*floor(floor(Nt/2)/2); %split data set in half. N must be even 
        X = sys_dat{ss}(1:N,7); 
        Y = sys_dat{ss}(end-N+1:end,1:Q);        
% Initialize some Wiener Filter Parameters 
[N,P]=size(X); [No,Q]=size(Y); W=zeros(M*P,Q); y_h2o = zeros(No,Q); 
% =============Start computing autocorrelation matrices================ % 
    RX = xcorr(X,N/2,'unbiased'); R_X = {}; % compute correlation functions 
    for i=1:P^2 % stack correlation functions into block Toeplitz corr. 
matrices  
          j= 1+floor((i-.2)/P); 
          k =1+ mod(i-1,P) ; 
         R_X{j,k} = toeplitz(RX(N/2+1:N/2+M,i)); 
    end 
    R_X = cell2mat(R_X); % convert into big matrix.  
          % figure(7); imagesc(R_X); colorbar;  
    for q=1:Q % loop over output dimensions 
        R_iy = zeros(P,M); 
        for i=1:P % loop over input dimensions 
            [c_iy, lags] = xcorr(X(1:No,i),Y(:,q),No/2,'unbiased') ; 
            R_iy(i,:) = flipud(c_iy(No/2+2:No/2+M+1)); 
        end     
            r_iy = reshape(R_iy',P*M,1)'; % cross correlation fxn 
            W(:,q) =  (r_iy/R_X)';  % compute Weiner Filter Coefficients 
        for i=1:P % loop over input dimensions 
            y_t = conv(X(1:No,i),W(1+(i-1)*M:i*M,q)); 
            y_h2o(:,q) = y_h2o(:,q) + y_t(M:end); % actual prediction 
        end        
   end    % end loop over q 
% ===================================================================== % 
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~% 
  
  
  
  
  
% ~~~~~~~~Filter using ALL input signals~~~~~~~~~~~~~~~~~~~~~% 
     % Seperate input and output 
        [Nt P] = size(sys_dat{ss}); 
        N = 2*floor(floor(Nt/2)/2); %split data set in half. N must be even 
        X = sys_dat{ss}(1:N,:); 
        Y = sys_dat{ss}(end-N+1:end,1:Q);        
% Initialize some Wiener Filter Parameters 
[N,P]=size(X); [No,Q]=size(Y); W=zeros(M*P,Q); y_all = zeros(No,Q); 
% =============Start computing autocorrelation matrices================ % 
    RX = xcorr(X,N/2,'unbiased'); R_X = {}; % compute correlation functions 
    for i=1:P^2 % stack correlation functions into block Toeplitz corr. 
matrices  
          j= 1+floor((i-.2)/P); 



          k =1+ mod(i-1,P) ; 
         R_X{j,k} = toeplitz(RX(N/2+1:N/2+M,i)); 
    end 
    R_X = cell2mat(R_X); % convert into big matrix.  
          % figure(7); imagesc(R_X); colorbar;  
    for q=1:Q % loop over output dimensions 
        R_iy = zeros(P,M); 
        for i=1:P % loop over input dimensions 
            [c_iy, lags] = xcorr(X(1:No,i),Y(:,q),No/2,'unbiased') ; 
            R_iy(i,:) = flipud(c_iy(No/2+2:No/2+M+1)); 
        end     
            r_iy = reshape(R_iy',P*M,1)'; % cross correlation fxn 
            W(:,q) =  (r_iy/R_X)';  % compute Weiner Filter Coefficients 
        for i=1:P % loop over input dimensions 
            y_t = conv(X(1:No,i),W(1+(i-1)*M:i*M,q)); 
            y_all(:,q) = y_all(:,q) + y_t(M:end); % actual prediction 
        end        
   end    % end loop over q 
% ===================================================================== % 
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~% 
for i=1:P % record weights from concatinated signal processing 
   ws(ss,i) = mean(mean(abs(W(1+(i-1)*M:i*M,:)),2)); 
end  
 val(ss) = mean(mean((Y-y_all).^2)); % is it during a massive error? 
  
    
      E_all = zeros(1,Q); 
   E_mov = zeros(1,Q); 
   E_com = zeros(1,Q); 
   E_stat = zeros(1,Q); 
   E_hum = zeros(1,Q); 
   E_h2o = zeros(1,Q); 
   E_ndvi = zeros(1,Q); 
   E_rand = zeros(1,Q); 
  
      E_all2 = zeros(1,Q); 
   E_mov2 = zeros(1,Q); 
   E_com2 = zeros(1,Q); 
   E_stat2 = zeros(1,Q); 
   E_hum2 = zeros(1,Q); 
   E_h2o2 = zeros(1,Q); 
   E_ndvi2 = zeros(1,Q); 
   E_rand2 = zeros(1,Q); 
    
   E_all3 = zeros(1,Q); 
   E_mov3 = zeros(1,Q); 
   E_com3 = zeros(1,Q); 
   E_stat3 = zeros(1,Q); 
   E_hum3 = zeros(1,Q); 
   E_h2o3 = zeros(1,Q); 
   E_ndvi3 = zeros(1,Q); 
   E_rand3 = zeros(1,Q); 
  
  
  



  
  
  
  
  
% values = {'latitude';'longitude';'dispersion';'orientation'}; 
    for q = 1:Q; 
% %        figure(1);% clf; 
% %         subplot(2,Q/2,q);  
% %         plot(Y(:,q),'k-','Linewidth',3); 
% %         plot(y_mov(:,q),'g-','LineWidth',.5); 
% %         hold on; 
% %         plot(y_com(:,q),'o-','LineWidth',.5); 
% %         plot(y_stat(:,q),'b-','LineWidth',.5); 
% %         plot(y_ndvi(:,q),'m-','LineWidth',.5); 
% %         plot(y_hum(:,q),'y-','LineWidth',.5); 
% %         plot(y_h2o(:,q),'c-','LineWidth',.5); 
% %          plot(y_all(:,q),'r-','LineWidth',.5); 
% %         plot(Y(:,q),'k-','LineWidth',.5); 
% %         title([ 'E',num2str(E),'i',num2str(ss)]); 
% %         ylim([-1 1]); ylabel(values{q}); xlabel('hours'); 
% %         
legend('mov','stat','ndvi','hum','h2o','all','real','Location','Best'); 
       % legend('real','all','mov','stat','ndvi','Location','SouthEast'); 
  
   E_all(q) = mean( (Y(:,q)-y_all(:,q)).^2)./std(Y(:,q)); 
   E_mov(q) = mean( (Y(:,q)-y_mov(:,q)).^2)./std(Y(:,q)); 
   E_com(q) = mean( (Y(:,q)-y_com(:,q)).^2)./std(Y(:,q)); 
   E_stat(q) = mean( (Y(:,q)-y_stat(:,q)).^2)./std(Y(:,q)); 
   E_hum(q) = mean( (Y(:,q)-y_hum(:,q)).^2)./std(Y(:,q)); 
   E_h2o(q) = mean( (Y(:,q)-y_h2o(:,q)).^2)./std(Y(:,q)); 
   E_ndvi(q) = mean( (Y(:,q)-y_ndvi(:,q)).^2)./std(Y(:,q)); 
   E_rand(q) = mean( (Y(:,q)-y_rand(:,q)).^2)./std(Y(:,q)); 
  
  
   E_all2(q) = mean( (Y(:,q)-y_all(:,q)).^2); 
   E_mov2(q) = mean( (Y(:,q)-y_mov(:,q)).^2); 
   E_com2(q) = mean( (Y(:,q)-y_com(:,q)).^2); 
   E_stat2(q) = mean( (Y(:,q)-y_stat(:,q)).^2); 
   E_hum2(q) = mean( (Y(:,q)-y_hum(:,q)).^2); 
   E_h2o2(q) = mean( (Y(:,q)-y_h2o(:,q)).^2); 
   E_ndvi2(q) = mean( (Y(:,q)-y_ndvi(:,q)).^2); 
   E_rand2(q) = mean( (Y(:,q)-y_rand(:,q)).^2); 
    
   E_all3(q) = mean( (Y(:,q)-y_all(:,q)).^2)./var(Y(:,q)); 
   E_mov3(q) = mean( (Y(:,q)-y_mov(:,q)).^2)./var(Y(:,q)); 
   E_com3(q) = mean( (Y(:,q)-y_com(:,q)).^2)./var(Y(:,q)); 
   E_stat3(q) = mean( (Y(:,q)-y_stat(:,q)).^2)./var(Y(:,q)); 
   E_hum3(q) = mean( (Y(:,q)-y_hum(:,q)).^2)./var(Y(:,q)); 
   E_h2o3(q) = mean( (Y(:,q)-y_h2o(:,q)).^2)./var(Y(:,q)); 
   E_ndvi3(q) = mean( (Y(:,q)-y_ndvi(:,q)).^2)./var(Y(:,q)); 
   E_rand3(q) = mean( (Y(:,q)-y_rand(:,q)).^2)./var(Y(:,q)); 
  
  
    end 



     
%  % Remove errors induced by numerical round-off tolerance 
%     rce = 1; % cut-off to detect RCOND singular matrix errors 
%   
% E_all2(E_all3>rce) = NaN;    
% E_mov2(E_all3>rce) = NaN; 
% E_com2(E_all3>rce) = NaN; 
% E_stat2(E_all3>rce) = NaN; 
% E_hum2(E_all3>rce) = NaN; 
% E_h2o2(E_all3>rce) = NaN;  
% E_ndvi2(E_all3>rce) = NaN; 
% E_rand2(E_all3>rce) = NaN; 
%  
%  
% E_mov3(E_all3>rce) = NaN; 
% E_com3(E_all3>rce) = NaN; 
% E_stat3(E_all3>rce) = NaN; 
% E_hum3(E_all3>rce) = NaN; 
% E_h2o3(E_all3>rce) = NaN;  
% E_ndvi3(E_all3>rce) = NaN; 
% E_rand3(E_all3>rce) = NaN; 
% E_all3(E_all3>rce) = NaN;   % this must come last or it will change the 
rest.    
  
  
% average errors across prediction values q 
 e_all = nanmean(E_all); e_mov=nanmean(E_mov);  e_com = nanmean(E_com);  
 e_ndvi = nanmean(E_ndvi); e_rand = nanmean(E_rand); 
 e_stat = nanmean(E_stat); e_hum = nanmean(E_hum); e_h2o = nanmean(E_h2o);  
  Err(ss,:) = [e_all, e_mov,e_com, e_ndvi, e_stat, e_hum, e_h2o,e_rand];  
  
 e_all2 = nanmean(E_all2); e_mov2=nanmean(E_mov2);  e_com2 = nanmean(E_com2);  
 e_ndvi2 = nanmean(E_ndvi2); e_rand2 = nanmean(E_rand2); 
 e_stat2 = nanmean(E_stat2); e_hum2 = nanmean(E_hum2); e_h2o2 = 
nanmean(E_h2o2);  
  Err2(ss,:) = [e_all2, e_mov2,e_com2, e_ndvi2, e_stat2, e_hum2, 
e_h2o2,e_rand2];  
  
   e_all3 = nanmean(E_all3); e_mov3 = nanmean(E_mov3);  e_com3 = 
nanmean(E_com3);  
 e_ndvi3 = nanmean(E_ndvi3); e_rand3 = nanmean(E_rand3); 
 e_stat3 = nanmean(E_stat3); e_hum3 = nanmean(E_hum3); e_h2o3 = 
nanmean(E_h2o3);  
  Err3(ss,:) = [e_all3, e_mov3,e_com3, e_ndvi3, e_stat3, e_hum3, 
e_h2o3,e_rand3];  
  
   
end % end loop over sectors  
  
Err_data{E} = Err;  
ErrT(E,:) = nanmean(Err); 
ErrM(E,:) = nanmedian(Err);  
ErrT2(E,:) = nanmean(Err2);   
ErrM2(E,:) = nanmedian(Err2); 
ErrT3(E,:) = nanmean(Err3);   



ErrM3(E,:) = nanmedian(Err3); 
 clear sys_dat; 
 end % end loop over elephants 
  
 median(Err3(Err3(:,1)<1)) 
 % save compsig_data2 ErrT ErrM ErrT2 ErrM2 ErrT3 ErrM3 Err_data;  
  
 %% 
 clear all;  load compsig_data2;  
  
  
  
bar1 = Err_data(1:13); bar2 = cell2mat(bar1'); 
  
C1 = [[0,0,1]; 
      [0,1,0]; 
      [1,0,.5]]; 
     
for k=1:13 
    Anna = bar1{k}; 
%     figure(3); clf; bar(Anna(:,[1,2,4,5])) ;  ylim([0,5]); 
%     legend('all','mov','ndvi','static'); 
  
    iAnna = 1./Anna;  
    figure(3); clf; bar(iAnna(:,[2,4,5]),'stack') ;  
    legend('mov','ndvi','static');  colormap(C1); 
    set(gcf,'color','w');  
    set(gca,'FontSize',18);  xlim([0,55]); 
  
    iAnna2 = iAnna(:,[2,4,5]); 
    [T,v] = size(Anna); 
  
    for i=1:T;  
    iAnna2(i,:) = iAnna2(i,:)/sum(iAnna2(i,:)); 
    end 
  
    figure(4); clf; bar(iAnna2,'stack') ;  
    legend('mov','ndvi','static','Location','EastOutside');  colormap(C1); 
    set(gcf,'color','w'); set(gca,'FontSize',18); ylim([0,1]); xlim([0,55]); 
  
    pause(3); 
end 
  
  
dpts = length(ErrM); 
C = [0,2,2,1,3,3,3]; 
colordef white; figure(1); set(gcf,'color','w');  
xlabels = {'All factors','Past mov.','CoM 
mov.','NDVI','Static','Human','Water'}; 
figure(1); clf; 
boxplot(ErrM(:,1:7),'plotstyle','compact','labels',xlabels,'colorgroup',C,'co
lors','rgbm','labelorientation','inline'); 
ylim([0,.7]); 
  



  
    
  
   figure(2); clf;  
   xlabels = {'All factors','Past mov.','NDVI','Static Feat.','Null Model'}; 
set(gca,'Xtick',1:4,'XTickLabel',xlabels,'FontSize',15); 
   h = boxplot([ErrM(:,[1,2,4,5])],'notch','on','labelorientation','inline'); 
   set(gca,'Xtick',1:4,'XTickLabel',xlabels,'FontSize',14); 
 ylim([0,.5]); ylabel('Normalized MSE'); 
  
   hText = xticklabel_rotate90(1.35:5.35,xlabels,30,1); 
   set(hText,'FontSize',12);  
   set(hText,'VerticalAlignment','baseline'); 
   set(gcf,'color','w'); ylabel('normalized MSE','FontSize',12);  
   set(gca,'fontsize',12); 
  
  
Q1 = zeros(1,8); Q3 = zeros(1,8); 
for i=1:8, 
    vals = sort(ErrM(:,i)); 
    qpts = round(dpts/4); 
    ind1 = find(vals>0,qpts,'first'); 
    ind3 = find(vals>0,qpts,'last'); 
    Q1(i) = vals(ind1(qpts)); 
    Q3(i) = vals(ind3(1)); 
end 
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