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Repeated use of the same areas may benefit animals as they exploit familiar

sites, leading to consistent home ranges over time that can span generations.

Changing risk landscapes may reduce benefits associated with home range

fidelity, however, and philopatric animals may alter movement in response

to new pressures. Despite the importance of range changes to ecological and

evolutionary processes, little tracking data have been collected over the

long-term nor has range change been recorded in response to human pressures

across generations. Here, we investigate the relationships between ecological,

demographic and human variables and elephant ranging behaviour across

generations using 16 years of tracking data from nine distinct female social

groups in a population of elephants in northern Kenya that was heavily

affected by ivory poaching during the latter half of the study. Nearly all

groups—including those that did not experience loss of mature adults—

exhibited a shift north over time, apparently in response to increased poaching

in the southern extent of the study area. However, loss of mature adults

appeared to be the primary indicator of range shifts and expansions, as genera-

tional turnover was a significant predictor of range size increases and range

centroid shifts. Range expansions and northward shifts were associated with

higher primary productivity and lower poached carcass densities, while

westward shifts exhibited a trend to areas with higher values of primary

productivity and higher poached carcass densities relative to former ranges.

Together these results suggest a trade-off between resource access, mobility

and safety. We discuss the relevance of these results to elephant conservation

efforts and directions meriting further exploration in this disrupted society of

a keystone species.
1. Introduction
Spatial philopatry, animals staying in or habitually returning to an area, is a

widespread phenomenon found across diverse species [1–3]. The greater fam-

iliarity of particular areas or routes is thought to enhance the ability of animals

to effectively exploit sites [4,5]. Some species show consistency over multiple

generations, both in migration routes and in seasonal use of the same sites

[6]. For example, southern right whales exhibit maternally inherited site fidelity

to summer feeding grounds off South Georgia [7], and the expansive pronghorn

antelope migration in the Yellowstone ecosystem passes annually through the

same narrow corridor [8]. In long-lived species with overlapping generations,

the role of social learning is thought to be critical for the maintenance of such

consistent long-term movement patterns [7,9,10].

Human pressures present challenges to ranging animals [11–13]. As wildlife

are exposed to landscape change or intensified risk on the landscape, the advan-

tages of site familiarity may be lost or outweighed by the risks associated with
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Figure 1. Movement tracks plotted from earlier (a) and later (b) generations from seven groups collared between 2001 and 2017 (data from groups where only one
generation was tracked are not shown). Lines represent 20 (a) and 18 (b) tracked years on a Google Maps base map. Outlines demarcate national reserves and parks,
with the two central outlines demarcating the Samburu and Buffalo Springs (left) and Shaba (right) National Reserves complex. Underlying red contours represent
poached carcass density during the period when the later generation was tracked (2013 – 2017). Carcass data were not available for the ecosystem encompassing
Meru National Park in the southeast corner.
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those sites [14,15]. For animals that exhibit plasticity in their

ranging, this may lead to range shifts or expansions as animals

seek out new areas or to range constrictions as animals seek to

avoid areas [16,17]. Changes in movement carry broad impli-

cations for life-history evolution, community dynamics and

species management, but how risk from humans influences

spatial behaviour over the long-term is not well understood

[18]. Some work has investigated ranging behaviour in relation

to changing levels of risk for specific individuals over time

[1,18,19], but rarely have longer term investigations been made.

African savannah elephants (Loxodonta africana africana) are

keystone generalist herbivores that range widely for seasonally

variable resources [20,21] and have exceptional spatial memory

[22]. Female elephants form stable core social groups with

overlapping generations that facilitate prolonged learning

[23–25]. This close knit social structure is thought to have

evolved in part to enable elephants to successfully exploit

large and complex landscapes. Transmission of knowledge

across generations is hypothesized to be a key aspect of this

process [26]. Range use might, therefore, be expected to be con-

sistent between generations within families [27], yet substantial

shifts in range use over decades have been documented in ele-

phant populations [28]. Comparison of movement across

generations in elephants offers the opportunity to gain insight

into long-term patterns in a widely ranging, social species.

Over the last decade poaching for ivory has increased

across African elephant range leading to population declines

[29–32]. Whether elephants are changing their use of space

in response to increased risk remains undetermined, but is

critical to understand in a species dependent on complex

movement strategies [33]. Given the importance of move-

ment to survival and access to resources like water and fresh

forage for elephants [26,27], the influence of poaching on move-

ment behaviour may have consequences for population

processes. Additionally, changes in elephant movement over

time carry ecosystem level implications, as elephant herbivory

and seed dispersal are linked to ecological functioning [34,35].

The Samburu elephant population of northern Kenya

has been studied continuously since 1997 [36], a period that

included high variability in anthropogenic threats to elephants.
Disruption in the form of a severe drought and a persistent

period of ivory poaching between 2009 and 2013 resulted in

high mortality, especially among adult elephants [29,37]. How-

ever, this mortality was not uniform across the population, and

it is hypothesized that poaching pressure across this system is

variable [38] and drives different behaviours that affect survi-

val. The elephants in disrupted families have been studied in

an ongoing project documenting behavioural responses to

social disruption caused by illegal killing [39–41]. Here, we

compare the ranging behaviour of female elephants from

groups that have been disrupted with those of their older

maternal relatives prior to the disruption to gain greater insight

into range fidelity and range change. Specifically, we asked

(1) whether ranges changed over time, (2) how younger gener-

ation ranges related to those of their older relatives and (3) what

ecological, human or demographic variables might account for

differences. We discuss the implications of our findings for

elephant response to human predation and for elephant

conservation in large landscapes.
2. Material and methods
(a) Study site
This study is part of a long-term individual-based elephant

monitoring project centred in Samburu and Buffalo Springs

National Reserves in northern Kenya within the Laikipia–

Samburu ecosystem (0.3–2.08 N, 36.2–38.38 E) [36] (figure 1).

The animals using the unfenced reserves are a part of the

second largest elephant population in Kenya [42]. Laikipia–

Samburu is made up of a patchwork of land use types including

community conservancies, human settlements, agriculture and

protected areas [38], and has been monitored intensively for

poaching since 2002 as a part of the Convention on International

Trade in Endangered Species’ (CITES) Monitoring Illegal Killing

of Elephants (MIKE) programme [43].

(b) Social and demographic data
The elephants that use the reserves are monitored by field teams

that survey the parks most days along set routes [44]. Records

of individuals are maintained through a photo-identification

http://rspb.royalsocietypublishing.org/


Table 1. Individuals tracked over the course of the study with birth years in parentheses. The Royals dataset represents three alternately collared relatives that
were in the same core social unit throughout the study. See main text for more detail on group characterizations. Distinct core groups correspond to consistent
colours across figures.

radio-collared female
no. years
analysed

period
tracked

range of combined
adult years in group

percent coordinate
fix success relationship (core group)

Rosemary (1966) 4 2002 – 2006 84 – 93 89.3 mother – daughter

(Spice Girls)Nutmeg (1995) 3 2014 – 2017 76 – 84 96.4

Maua (1972) 4 2002 – 2013 46 – 64 97.2 mother – daughter (Flowers)

Orchid (2004) 2 2015 – 2017 60 – 63 97.1

Goya (1960) 2 2001 – 2003 99 – 103 93.9 mother – daughter (Artists)

Flaubert (1989) 3 2013 – 2016 128 – 138 92.3

Aztec (1975) 1 2003 – 2004 120 98.0 grandmother – granddaughter

(American Indians)Amayeta (2000) 1 2013 – 2014 52 76.6

Amina (1956) 2 2002 – 2004 123 – 127 80.6 grandmother – granddaughter

(Swahili Ladies)Habiba (2001) 3 2013 – 2016 12 – 26 92.4

Maya (1976) 3 2002 – 2005 50 – 93 87.4 mother – daughter

(First Ladies)Salma (1999) 3 2014 – 2017 34 – 38 97.8

Neptune (1966) 4 2001 – 2008 121 – 181 86.5 mother – daughter (Planets)

Luna (2000) 3 2013 – 2016 54 – 60 95.6

Jerusalem (1968) 7 2003 – 2014 121 – 194 91.2 (Biblical Towns)

Cleopatra, Anastasia,

Anabelle (1965,

1973, 1986)

12 2001 – 2017 122 – 182 91.6 (Royals)
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system, and the ages and family histories of most animals are

known [37,45]. Analyses of association data recorded during

daily surveys were used to define social groups within the

hierarchical society [44]. The most cohesive and closely bonded

social level in elephant society is the core group, often but not

always a family unit of close maternal relatives and their

offspring [23,39,44–46]. Members of inter-generational pairs of

tracked elephants in this study belonged to the same core

social group, such that each pair represented a distinct core

group over different time periods.
(c) Movement data
GPS collars recording hourly positions were fitted on immobilized

elephants according to protocol of the government of Kenya, admi-

nistered by a Kenya Wildlife Service veterinary team jointly with

the Save the Elephants field team. After collection, movement data-

sets were cleaned for errors by removing coordinates that could

only be reached with speeds exceeding 10 km h21 (deemed bio-

logically unrealistic), duplicate and incomplete records. For

analyses, data were organized into annual datasets with start

dates that maximized the number of sampled days in each dataset.

Annual datasets had high fix success, averaging 91.5% (ranging

from 76.6 to 98.0%) of expected hourly coverage (table 1). The

female with the lowest fix success (Amayeta) died 2 months

prior to a complete year of tracking. Inter-generational pairs of col-

lared elephants in this study represented disrupted families and

included five mother–daughter pairs and two grandmother–

granddaughter pairs (table 1). For comparison, we included

movement records from two families that did not experience

generational turnover that were continuously tracked over the

same period, such that nine family lineages were represented in

this study.
(d) Analyses
Continuous time stochastic process models that account for

inherent autocorrelation were fitted to annual tracking datasets

for each dataset in the study (n ¼ 17; Cleopatra and Anastasia are

closely associated sisters that were alternately collared and were,

therefore, considered a single dataset) to estimate annual autocorre-

lated kernel density estimation (AKDE) home ranges [47,48]. We

estimated both 95% (general) and 50% (core) AKDE home ranges

[33]. AKDE home range estimation is robust to inconsistencies in

sampling schedules [47] and, therefore, suited to this tracking data-

set that spanned several years with variable fix successes. Because

tracking datasets varied across individual elephants, we conducted

home range analyses on each individual year. Analyses were done

using the package ctmm in R v. 3.4.2 [47,49].

To understand whether and how annual home ranges within

families change over time, we constructed two sets of normally dis-

tributed hierarchical models predicting the response variables

latitudinal centroid of home range, longitudinal centroid of home

range and home range size. The first set of models predicted

these response variables as a function of time to ascertain if range

changes were occurring over time, with individual elephant as a

random effect and the day on which tracking began as the single

predictor variable. The second set of models used the difference

in centroids or the difference in home range size between pairs of

annual home ranges within a core group over different years

(later minus earlier). This set included covariates corresponding

to differences in ecological, human, demographic and control vari-

ables characterizing the different annual ranges of the focal groups.

Specifically, we calculated the difference in mean normalized

difference vegetation index values between the former and later

annual ranges using data from the MODIS satellite at 250 m spatial

resolution and 16-day temporal resolution (https://lpdaac.usgs.

gov; product MOD13Q1) averaged over both range areas during

https://lpdaac.usgs.gov
https://lpdaac.usgs.gov
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the later period (NDVI); the difference in poaching carcass density

between the two ranges during the later period calculated as the

number of illegally killed carcasses [43] divided by the home

range size ( poaching); the difference in the combined age of core

group adults between the two periods calculated as the sum of

the ages of adults in a core group where elephants were considered

adults at breeding age (age adults); the difference in the number

of coordinates collected between the two datasets ( fixes); and

whether each comparison of annual home ranges was inter-

generational, where the covariate inter-generational was assigned

as 0 when the comparison of annual ranges was within one

generation (i.e. same individual or among females in the Royals

group) and 1 when the comparison was across different generations

before and after the older tracked individual died (i.e. mother–

daughter or grandmother–granddaughter pairs). As with response

variables, all covariates that compared conditions between ranges

during the later time period were defined as the value for the

later range minus the value for the former range, such that positive

differences indicated comparatively higher values in the later

range. This structure allowed insight into how later conditions

changed between the two ranges, not how conditions changed

over time. We excluded Orchid’s most recent range from this com-

parative analysis because she ventured into a different ecosystem

for which we did not have poaching data (figure 1). We included

core group identity as a random effect, and standardized continu-

ous predictor variables prior to running models for ease of

interpretation. No covariates were correlated above r ¼ j0.5j.
3. Results
The average size of annual ranges among all females

studied was 1690.5 km2 (s.d. ¼ 2660.9 km2) for 95% home

ranges and 396.2 km2 (s.d. ¼ 688.2 km2) for 50% home

ranges. Among groups that spanned more than one gener-

ation, ranges of older generations tended to be smaller at

1326.2 km2 (s.d. ¼ 1691.2 km2) for 95% home ranges and

285.4 km2 (s.d. ¼ 360.8 km2) for 50% home ranges when com-

pared to their younger relatives, which averaged 3267.2 km2

(s.d. ¼ 3984.3 km2) for 95% home ranges and 811.7 km2

(s.d. ¼ 1061.3 km2) for 50% home ranges. Ranges in the early

part of the study (collared prior to 2009 when poaching inten-

sified) versus the latter part of the study (collared in 2009 or

later) averaged 1148.7 km2 (s.d. ¼ 1448.2 km2) for 95% ranges

and 248.8 km2 (s.d. ¼ 310.2 km2) for 50% ranges when com-

pared to 2213.7 km2 (s.d. ¼ 3400.2 km2) for 95% ranges and

538.4 km2 (s.d. ¼ 901.0 km2) for 50% ranges, respectively.

There was a clear latitudinal shift north in the home

ranges of the elephants collared over time. Shifts in longitudi-

nal centroids exhibited inconsistency, with some families

maintaining similar easting centroids and others shifting

west or east with time (figures 1 and 2; table 2). Changes in

home range size over time were found in the behaviour of

about half of the core groups (figure 2), with the spectrum

of responses (increasing, decreasing or staying the same)

resulting in no significant changes detected in the overall

model (table 2).

We found evidence for range shifts between generations

within core groups, with 50% and 95% home ranges exhibiting

similar changes (table 3). We analysed ecological and human

properties that were associated with these shifts by examining

differences between conditions in current and former ranges

during the latter period. When controlling for the number of

fixes between years, shifts north and west were associated

with accessing areas with higher primary productivity. Later
ranges were associated with higher poaching carcass density

for westward shifts in the 50% range model and lower poach-

ing carcass density for northward shifts in the 95% range

model, though the latter result was not significant at the a ¼

0.05 level. Home range centroid shifts were significantly

related to whether comparisons were inter-generational, with

shifts north and west occurring between relative to within

generations and younger families tending eastward.

Increases in 95% home range size were associated with

inter-generational comparisons, indicating that younger gener-

ations increased their ranges relative to older generations to a

greater extent than found in same generation comparisons.

Increases in home range area were negatively related to poach-

ing carcass density, indicating lower poaching pressure was

found the greater the differences in range size between gener-

ations. In addition, increased range size was characteristic of

core groups with younger adults and positively related to

NDVI, suggesting expanded ranges were associated with

higher primary productivity. For 50% ranges, only the inter-

generational and NDVI covariates were significant for the

range size analysis.
4. Discussion
The areas animals use can have far-reaching implications for

their survival and reproduction [50]. To date little work has

explored how animals change ranges across generations,

but such information can provide unique insight into what

drives movement and the development of philopatric beha-

viours. We examined tracking data collected from multiple

generations of known elephant core groups over a period

spanning variable ecological conditions and both low and

high rates of ivory poaching, allowing investigation of range

fidelity and drivers of range change in a well-studied elephant

population. Female elephants exhibit matriarchal social struc-

ture [23,24], and older adults are linked to resource access

[27], ecological and social knowledge [25,51] and calf survival

[26,52,53]. Ivory poaching tends to target older animals for

their larger tusks, reducing population age structure [54,55].

Since matriarchs are targeted, this causes orphaning and

alters family unit structure. The ability of orphans and families

that have lost their mature adults to survive within their

dynamic landscapes is a concern for population recovery

[26]. Our analysis of space use patterns in elephant core

groups with different demographic histories tracked over a

16-year period demonstrated substantive change in range

use, with generational turnover associated with range expan-

sions and shifts. However, families demonstrated highly

individualistic space use patterns over time. For example, the

sprawling movements of the later generations of the Spice

Girls and Flowers were markedly different from the more

recursive movements of their mothers. By contrast, the Swahili

Ladies and Artists maintained the recursive movements of

their matriarchs but contracted their ranges to centre around

the protected areas relative to those of their older relatives.

Such differences among families underscore the complexity

inherent in the ranging behaviour of this species and the

potential role of multiple factors at play.

(a) Environmental drivers of range shifts
The general trend of northward shifts in home range centroids

demonstrated across nearly all collared families (figure 2) was

http://rspb.royalsocietypublishing.org/
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Figure 2. Easting (a) and northing (b) range centroids and home range size (c) across the years of the study for 95% and 50% home ranges. Ranges shifted north
over the study across the sample and increased in size for about half of the studied groups. Longitudinal shifts were mixed among families. Distinct colours
correspond to different core groups and are consistent across panels and with figure 1.

Table 2. Coefficient estimates (s.e.) and p-values for home range characteristics as a function of tracking year demonstrate a shift north in the home range
centroid. Home range for this analysis was log-transformed. p-Values less than 0.1 are italicized.

response
variable

centroid
easting (95%)

centroid
easting (50%)

centroid
northing (95%)

centroid
northing (50%)

home range
size (95%)

home range
size (50%)

date coefficient

estimate (s.e.)

0.015 (0.014)

p ¼ 0.264

0.009 (0.011)

p ¼ 0.42

0.030 (0.009)

p , 0.01

0.019 (0.006)

p , 0.01

0.257 (0.170)

p ¼ 0.138

0.298 (0.187)

p ¼ 0.116
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caused by less use of the areas to the south and southwest of

Samburu and Buffalo Springs National Reserves as well as

more use of the areas north of these reserves (figure 1). The

less used southern areas were subject to heavy poaching

during the latter half of the study and were the known location

of adult killings from some of the tracked families. Notably,

greater use of northern areas occurred regardless of the disrup-

tion experienced by individual families, with control families

that did not experience poaching exhibiting this pattern as

well (electronic supplementary material). The observed shifts

in range appear to reflect a general response to illegal killing

and avoidance of higher risk areas; model outputs showed a

general avoidance of poaching associated with northern
shifts, though the coefficient was not significant at the a ¼

0.05 level. The areas directly north of the reserves had lower

poaching pressure, largely because they are older community

conservancies that have benefited from ecotourism and the

security it brings [38]. Northward shifts were also associated

with higher relative primary productivity, suggesting multiple

benefits to these range shifts as elephants are known to select

habitat with high greenness at broad spatial scales [21,56].

Like northward shifts, westward shifts were associated with

higher primary productivity. Unlike northward shifts, west-

ward shifts were also associated with higher poaching,

suggesting some families may be trading off productivity for

safety in their ranging strategies. The drivers of the divergence

http://rspb.royalsocietypublishing.org/


Table 3. Coefficient estimates (s.e.) and p-values for models of home range changes, with those with p-values less than 0.1 italicized. Covariates represent the
value in the later range minus the value in the earlier range for pairwise comparisons, such that positive values indicate an increase in the covariate in the
later range was associated with an increase in the response variable.

covariate
easting
centroid (95%)

easting
centroid (50%)

northing
centroid (95%)

northing
centroid (50%)

home range size
(95%)

home range
size (50%)

age of adults 0.008 (0.007)

p ¼ 0.234

20.013 (0.007)

p ¼ 0.052

20.005 (0.005)

p ¼ 0.336

0.001 (0.004)

p ¼ 0.844

2418.30 (161.65)

p , 0.01

83.24 (50.43)

p ¼ 0.101

poaching carcass

density

0.000 (0.005)

p ¼ 0.957

20.012 (0.005)

p , 0.05

20.007 (0.004)

p ¼ 0.069

0.001 (0.003)

p ¼ 0.783

2206.47 (110.93)

p ¼ 0.069

47.57 (37.70)

p ¼ 0.209

number of fixes 0.014 (0.005)

p , 0.01

0.005 (0.006)

p ¼ 0.368

20.011 (0.004)

p , 0.01

20.004 (0.003)

p ¼ 0.204

2343.34 (123.48)

p , 0.01

219.30 (40.52)

p ¼ 0.634

inter-generational 20.070 (0.015)

p , 0.001

20.100 (0.016)

p , 0.001

0.091 (0.012)

p , 0.001

0.086 (0.009)

p , 0.001

1812.75 (347.01)

p , 0.001

753.09 (116.37)

p , 0.001

primary

productivity

20.044 (0.006)

p , 0.001

20.018 (0.006)

p , 0.01

0.010 (0.005)

p , 0.05

20.004 (0.003)

p ¼ 0.182

1837.06 (138.85)

p , 0.001

215.38 (41.66)

p , 0.001
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in ranging strategies between those families shifting east

toward relative safety and those shifting west are unclear

from the present study, but such variability in ranging strategies

deserves further study.

The influence of the risk landscape on animal foraging

behaviour has been characterized in numerous systems [57],

including this study system where shifts in elephant circadian

patterns were found in human dominated areas [58–60]. It is

worth noting that poaching is a cryptic activity [61], and our

metric of poached carcasses serves as a coarse proxy for more

nuanced human activity that elephants are likely responding

to on the landscape. Despite the absence of finer resolution

data on poaching risk, our analyses did suggest a trend

away from areas with successful poaching attempts for

those families that shifted north and east.

While larger home ranges can be associated with ener-

getically expensive large-scale movements, the movement

requirements of such large ranges may be offset by access to

greater forage quantity and possibly quality, as indicated

by the positive correlation with primary productivity

(table 3). Thus, range size expansions and westward shifts are

potentially both associated with trade-offs in this ecosystem,

signifying the influence of human pressures and ecological

resources on ranging behaviour. While home range provides

a broad metric of space use, future work detailing differences

in habitat selection across this sample will provide deeper

insight to the mechanisms structuring changes in range.
(b) Social and demographic drivers of range change
Before poaching intensified in this population, range size was

found to be inversely correlated to social dominance, where

less dominant, younger families had larger ranges [27]. Our

results are consistent with the idea that following disruption

from age-selective poaching, younger families may be more

inclined to expand their range and move into new areas.

Our analysis, however, suggests a range of strategies that

do not always follow this pattern. For example, the most dis-

rupted family in our sample which lost all its adult females

in the period of increased poaching—the Swahili Ladies—

contracted their range to encompass little more than the

protected areas (electronic supplementary material).
However, orphans have less interaction with adults, limiting

their access to ecological knowledge [41]. Therefore, con-

stricted ranges around preferred areas do not necessarily

indicate priority of access to resources.

The strategy by younger families to expand their range

contrasts with age-related range expansions recorded in the

Tarangire ecosystem in Tanzania, which occurred during

droughts in families led by older matriarchs [26]. There are

several possible drivers as to these contrasting results, par-

ticularly the different ecology of the two study systems

(Tarangire receives two to three times the annual rainfall of

Samburu). However, we suspect the recorded range shifts

are at least partly influenced by orphans changing their

primary social partners. Social instability stemming from

age-selective mortality results in elephants restructuring

their relationships [39,41]. Access to other animals with

different spatial knowledge that may inform movement

decisions [62] may be critical in some cases for surviving

orphans during periods of change.

As elephant families alter their ranges in different ways, the

question of how movement influences survival and reproduc-

tion is increasingly important to interpret the repercussions

of such behavioural changes. Further work that integrates

demographic data with information on movement and social

strategies will provide a more comprehensive understanding of

the implications of altered social landscapes for this threatened

keystone species. Long-term, multi-generational movement

studies provide novel understanding of how populations

shift spatial behaviours in response to landscape dynamics

and can be used to discern critical mechanisms shaping spatial

behaviour over time. Such information is valuable for applied

conservation by illuminating drivers of spatial behaviour,

preferred landscape features and areas to target for protection

as important refuge habitats. This unique inter-generational

dataset offers insight into range changes over time, but the

variable responses of the nine families included in our analysis

underscore the complexity of response to dynamic land-

scapes in this species and the need for greater sampling to

better illuminate this process. Our inter-generational study

demonstrates the importance of continuous monitoring

and the complexity of wildlife response to increasingly

anthropogenically altered landscapes.
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