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A B S T R A C T

In aerial wildlife counts, human observers often fail to detect animals. We conducted a multi-species sample-
count in Tsavo National Park, Kenya, with traditional rear-seat-observers (RSOs) and an automated ‘oblique-
camera-count’ (OCC) imaging system to compare estimates of 23 wildlife species derived from these two survey
methods. An aerial Total Count of elephant, buffalo and giraffe, conducted a month previously, provided a
further comparison. In the Tsavo Core (9560 km2), which harbours 80% of Tsavo’s elephants, the OCC system
acquired 81 000 images for interpretation, of which 67 000 were obtained in parallel with RSO-counting along
3004 km of flight line. The Tsavo outer blocks (24 171 km2) were surveyed using the OCC system without RSOs
to acquire a further 84 000 images. A random sample of 11 553 images were re-interpreted to derive species-
specific probabilities of detection and correction factors. Using ‘Jolly II’, non-parametric and Bayesian analyses,
and applying correction factors, we demonstrate that the RSOs did not detect 14% of elephants, 60% of giraffe,
48% of zebra and 66% of the large antelopes. For comparison, the Total Count observers did not detect 27% of
elephant, 33% of buffalo, 57% of giraffe and 85% of carcasses. The OCC method raises the elephant population
estimate to 16 681 ± 4047 (95% cl) from the 12 722 counted in the Total Count (Z = 1.917, p = .0276). These
results suggest that RSO-based methods have significantly undercounted wildlife populations. To align with
improved counting methods, previous results need to be re-calibrated.

1. Introduction

In eastern and southern Africa the standard method for counting
wildlife and livestock over large areas is the systematic reconnaissance
flight (SRF), whereby light aircraft are flown along systematically
spaced transects over the terrain at low level whilst ‘rear-seat-observers’
(RSOs) count animals in sample strips defined on each side of the air-
craft (Andere, 1981; Caughley, 1977; Craig, 2012; Grimsdell and
Westley, 1981; Norton-Griffiths, 1978; Ogutu et al., 2016; Ottichilo
et al., 2000; PAEAS, 2014). The ‘strip-transects’ are the sample units,
and the species population estimate is derived from the ratio of the total
area to the sampled survey area (Jolly, 1969). An alternative approach,
often applied in South Africa, Australia and the USA, is the ‘line-
transect’ method, where the population is estimated as a function of the

distance of animals from a survey line (Buckland et al., 2004; Burnham
et al., 1985; Eberhardt, 1978; Kruger et al., 2008).

Observers in both strip-transects and line-transect sampling often
fail to detect animals with the result that populations are under-
estimated (Caughley, 1974; Cook and Jacobson, 1979; Gasaway et al.,
1986; Jachmann, 2002; Lee and Bond, 2016; Norton-Griffiths, 1976;
Pollock and Kendall, 1987; Schlossberg et al., 2016; Whitehouse et al.,
2001). Animals might not be detected either because they are over-
looked, or because they are ‘unavailable for detection’, being in dense
vegetation cover for terrestrial animals (Bayliss and Yeomans, 1989;
Jachmann, 2001; Jacques et al., 2014) or underwater for marine
mammals (Marsh and Sinclair, 1989; Pollock et al., 2006). Determining
the number of unavailable animals requires that surveys are im-
plemented in areas where the ‘true’ population is known (Jachmann,
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2002; Lubow and Ransom, 2016; Tracey et al., 2008; Whitehouse et al.,
2001), or where availability is modelled through the detection of radio-
tagged or marked animals during sample counts (Jacques et al., 2014;
Zabransky et al., 2016).

In consideration of ‘available animals’, the SRF method is subject to
a wide range of biases relating to survey factors such as aircraft type,
ground speed, altitude, sample strip width, and observer’s experience,
interest and fatigue (Beasom et al., 1981; Caughley, 1974; Fleming and
Tracey, 2008; Jachmann, 2001; Norton-Griffiths, 1976; Pennycuick and
Western, 1969; Steinhorst and Samuel, 1989). ‘Environmental factors’
also cause biases, including animal size, group size, colour against
background, multi-species groups, reaction of animals to the aircraft,
species habitat preference, vegetation type, cover and seasonal phe-
nology, sun-angle, illumination and shadowing, topography and
weather conditions (Anderson and Lindzey, 1996; Griffin et al., 2013;
Jachmann, 2002; Jacques et al., 2014; Lubow and Ransom, 2016;
McConville et al., 2009; Ransom, 2012; Rice et al., 2009; Strobel and
Butler, 2014; Wal et al., 2011).

All of these factors are influenced by one major limitation of the SRF
method, this being the short window of time that an observer has to
scan the terrain and count. This effect can be somewhat mitigated if the
counting platform can hover, but helicopters are often unaffordable or
unavailable, especially in Africa where large-area counts are needed.
Therefore, fixed-wing aircraft with high-wings are used, with cheaper
operating costs. In SRF surveys conducted to normal standards with
fixed-wing aircraft (Caughley, 1977; Craig, 2012; Norton-Griffiths,
1978; PAEAS, 2014) the aircraft is flown at low level, for example
350 ft (107 m), above ground level and at 160–190 km/hr. The aircraft
must be operated at an airspeed no slower than about 40% to 60%
above the stall speed to remain safe, and there can be no deviation from
the flightpath without distorting the sampling frame. RSOs have the
continuously changing elements of the landscape mosaic – woodland
patches, waterholes, open glades - in sight for just 5–7 seconds, and
within this ‘scan-time’ the RSO must detect and count animals within
the strip. RSO training is essential, involving animal identification,
rapid enumeration, recording the estimate and referencing the location
in some prescribed way (Craig, 2012; PAEAS, 2014). If large herds are
encountered, they must be estimated and photographed for later
counting, and the photograph frame code and number also recorded. In
a wildlife-rich environment, the workload of an RSO is therefore high,
whilst in areas of low wildlife density fatigue and boredom set in; both
scenarios lead to bias in estimation (Caughley, 1974; Fleming and
Tracey, 2008; Jachmann, 2001; Norton-Griffiths, 1976).

For these reasons it has long been proposed that counts can be
improved by replacing observers with camera-only systems (Caughley,
1974; Leedy, 1948; Siniff and Skoog, 1964). Probably the first rigorous
study to apply vertical aerial photography was a stratified random
count of wildebeest in the Serengeti in Tanzania (Norton-Griffiths,
1973). Here, a seasonal stratum was defined that encompassed most of
the population, which was then sampled by vertical ‘aerial-point-sam-
pling’ (APS) photography along transects. Since then, APS has been
used in a number of large-area or large-population surveys, from reg-
ular wildebeest counts in the Serengeti (Hopcraft et al., 2015; TAWIRI,
2010), to caribou in Canada (Couturier et al., 1994) and desert ante-
lopes in Mongolia (Norton-Griffiths et al., 2015). Such methods now
have great potential applications for UAV-based surveys, when UAV
endurance and lightweight camera systems can be improved
(Vermeulen et al., 2013). However, whilst vertical imaging such as APS
may be used in open areas with low tree canopy cover and/or high
contrast backgrounds, for example open plains, deserts or snowfields, it
is not suitable for areas of higher cover where herds may be clustered
under tree canopies or in thick cover. Here, the oblique viewing ap-
proach, such as the strip-transect count, remains the most suitable
method. The potential of oblique continuous imaging to supplement
RSOs has only recently been explored, the first reported example being
in a marine environment off Greenland for a single species, narwhal

(Monodon monoceros), where it was concluded that in this marine en-
vironment and for a single species, there was no significant differences
in RSO-based and image-based estimates (Bröker et al., 2019),

To date there have been no reported experiments in complex ter-
restrial environments in Africa or elsewhere to acquire continuous ob-
lique imagery of the sample strips normally scanned by RSOs and in-
terpreting this imagery for multiple species. This largely removes the
scan-time constraint of the SRF method, since interpreters can spend as
long as they need on any one scene to ascertain if animals are present.
We ask the question: if interpreters have an unlimited time to detect
animals within the sample strip, do they find more animals than aerial
observers who have just seconds to detect animals within the same
strip? This paper presents the results of an experimental multispecies
wildlife count of a large protected area in Kenya, where we operate an
‘oblique-camera-count’ (OCC) system simultaneously with RSO-
counting. We visually interpreted the resulting 165 000 images to de-
termine how effectively RSOs have detected animals. We also compare
the OCC estimates with a total count conducted a month previously. We
determine whether bias is significant in RSO enumeration of available
animals and explore image-based methods for improved counting.

2. Methods

The OCC survey method was adapted from techniques developed in
Uganda (Lamprey, 2016). For Tsavo, a standard RSO-based SRF was
implemented in parallel with camera systems imaging the same strips,
and the number of animals counted by both methods was compared.
The survey test area in Kenya was the ‘Tsavo Conservation Area’, a vast
expanse of semi-arid grassland and bushland where wildlife densities
are relatively low. We selected Tsavo since the OCC method could be
tested in conjunction with two other wildlife counts that were already
planned in early 2017, thereby reducing aircraft operation costs. Tsavo
is a challenging area for aerial counting; large areas of this arid land-
scape are monotonous, and at low flight levels the ambient air tem-
perature often exceeds 35 °C, with accompanying strong winds and
turbulence. Recent total count and SRF sample count estimates for
elephants in Tsavo have shown significant variation (Chase et al., 2014;
Kyale et al., 2014; Ngene et al., 2011, 2017), and more accurate and
precise population estimates are needed for elephants and a wider
range of species to determine whether current conservation measures
are effective.

The surveys were conducted in collaboration with the government’s
wildlife agency, the Kenya Wildlife Service (KWS). Counting methods
were compared across three surveys conducted in February-March
2017. The first, the 2017 Tsavo Total Count was conducted by KWS: as
its name implies, it was conducted to count all individuals of certain
key species. The second survey (‘TS1′), was a simultaneous OCC and
RSO-based sample count of the Tsavo Core area. The third (‘TS2′), was
an OCC-only sample count of the outer Tsavo strata. The OCC counts
generated 165 000 images for interpretation, of which 67 000 images in
TS1 coincided with simultaneous RSO strip-counting from the same
aircraft.

For the RSO count, methods follow current guidelines of RSO-based
SRF counts for elephants (Craig, 2012; PAEAS, 2014). Calibration ex-
ercises were carried out to determine the width of the imaged strips as a
function of aircraft flying height. For our implementation of the OCC
method, image interpretation was carried out by a team of 8 inter-
preters, who visually scanned the imagery to identify and count ani-
mals, and entered the data into a database. We test for bias between
interpretation teams, and then compare transect counts and population
estimates derived by the RSO sample count, the OCC sample count and
the Total Count.

Since aerial wildlife counts are often implemented by pilot-biolo-
gists, we use the standard aviation units of feet for altitude and knots
for airspeed since the measurement instruments in the aircraft are ca-
librated in these units. Acronyms used in this paper are indicated in
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Appendix A. To open wildlife agency minds long-steeped in the ‘sanc-
tity of p-values’ to the concepts of inference, likelihood and weights-of-
evidence (Burnham and Anderson, 2014), we undertake simple Baye-
sian testing to compliment the 50-year old Jolly II analysis and standard
parametric methods for comparing results from aerial counts.

2.1. Survey area

The survey covered 33 731 km2 of Tsavo East and West National
Parks, the Chyulu Hills National Park and edges of Galana Ranch to the
east, see Fig. 1. This vast region of semi-arid Acacia-Commiphora
bushland and grassland was thought to harbour an estimated 12 500
elephants (Ngene et al., 2011; Thouless et al., 2016), which constitute
about 60% of Kenya’s elephants. This population was afflicted by
drought and poaching in the 1970s and 80s (Cobb, 1976; Olindo et al.,
1988; Ottichilo, 1987), reaching a low point of about 7000 in 1988 and
recovering slowly since then. Most of Tsavo’s elephants are now located
within a central zone, the Tsavo Core, which for this survey covered
9560 km2 and included elephant areas north of the Galana River. The
Tsavo Core was surveyed in TS1, which combines the OCC and RSO
methods. Transects were spaced at 2.5 km intervals to provide a high
intensity ∼12% sample according to PAEAS guidelines (PAEAS, 2014),
and were orientated north-south across the Galana River to minimize
variance. Surrounding the Core are the North, North-West, South and
East strata, framed as in the previous sample count of 2014 (Chase

et al., 2014). These strata were surveyed using the OCC method only,
with east-west transects spaced at 5 km apart for a medium intensity
(∼6%) sample, and 10 km apart in the elephant-sparse East stratum.
The TS1, TS2 and Total Count surverys were conducted at the end of a
long dry spell when previous ‘short rains’ of October-November 2016
had been below average.

2.2. Aircraft and camera specifications

For TS1 a 6-seat Cessna 206 aircraft (registration 5Y-AKP) was used,
equipped for an RSO count with intercom systems and counting rods.
Through standard ground measurements procedures with observers
seated in their comfortable positions the counting rods were mounted
to define a strip of 150 m each side of the aircraft (Norton-Griffiths,
1978; PAEAS, 2014). In clearing the aircraft undercarriage, the
counting rod alignment resulted in the RSO viewing angle of 57° from
vertical through the centre line of the markers. The cameras were
mounted at this angle to align to the RSO counting strip. The cameras
were unmodified Nikon D3200 digital-single-lens-reflex cameras of 24-
megapixel CMOS sensors, with 18–70 mm zoom lenses. Images were
captured in standard JPG format, since higher definition RAW formats
are too large for data storage in multi-hour survey missions.

To capture the counting strip, the required lens focal length was
calculated as 42 mm, this being a function of field-of-view (Edin, 2014),
camera inclination angle (57°) and height-above-ground-level (HAGL)

Fig. 1. Map of the Tsavo survey area, with protected areas, strata and survey transects. The coincident RSO-OCC transects are shown in the Core. TENP and TWNP
are Tsavo East and Tsavo West National Parks respectively. The inset map shows the location in Kenya. Mkomazi in Tanzania was not surveyed, but few elephants
were recorded here in the total count. For clarity, the elephant distribution across the ecosystem is plotted on the ecosystem-wide 5 km grid, rather than the Core only
2.5 km grid. The rectangles in Core stratum delimit the equal length transects used for RSO-OCC count comparisons.
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(350 ft). This combination resulted in a theoretical ground-sampling-
distance (Neumann, 2008) of 1.5 cm at the frame inner edge, increasing
to 2.7 cm at the outer edge. In practice this ‘resolution’ is reduced in
JPG image formats by about 50% to 3 cm and 5.4 cm respectively by
the camera sensor Bayer array (Aerial-Survey-Base, 2014; Bull, 2014),
and possibly further to ∼8 cm by the forward velocity of the aircraft
(O’Connor et al., 2017). The cameras were mounted on a frame at the
same eye level as the RSOs, with lenses protruding through open ven-
tilation ports in the third seat-row windows. In this position they did
not interfere with the counting operations of the RSOs seated in the
second row of seats. No inertial measurement unit for roll or pitch
measurement was installed, since the cramped cabin arrangement with
four crew and much equipment precluded this option and emphasis was
in simplicity of operation. With camera ISO adjusted to ≤ ISO 400,
images were acquired at shutter speed of ≤ 1/1000th of a second (≤
0.001 s). Images were acquired at 2 s intervals to provide overlapping
coverage without gaps at the relatively slow groundspeed of 89 knots
± 5.3 knots (SD, n = 78 830) (165 km/h) to conform to requirements
for RSO counting (Craig, 2012; PAEAS, 2014).

For TS2 we used a Cessna 182 aircraft (registration 5Y-ATS) with a
large camera port for the camera installation. This was a single-crew
operation without observers, where camera functions, GPS recording
and height management were under the control of the pilot (the lead
author). Here, the flying height, camera inclination and focal length
specifications followed those of the Uganda surveys (Lamprey, 2016),
with HAGL set at 500 ft (152 m) and cameras inclined at 45°. The image
acquisition was also set at 2 s interval, and groundspeed at 105 knots
(194 km/h), to acquire continuous strips in this specific configuration.
For TS2 the lens focal length of 35 mm was set to define a strip-width of
130–140 m, with the more exact strip being defined at strip-width-ca-
libration. The theoretical ground-sampling-distance for frame inner and
outer edges was determined as 2.1 cm and 3.3 cm respectively (Aerial-
Survey-Base, 2014), with Bayer degradation to approximately 4.2 and
6.6 cm respectively.

The cameras were set up to operate automatically for at least 4 h
with external power supplies, intervalometers and data storage cards

sufficient for 8000 images. At the end of the survey, all images were
renamed using a single code structure defining date, time, aircraft,
camera side (left/right), camera folder and frame number. Before each
mission, the camera clocks were synchronized to the aviation Global
Positioning System (GPS) receiver clock to within 1 s for later geor-
eferencing in Universal Transverse Mercator (UTM) coordinates against
GPS tracklogs, in order to create a geographical information system
(GIS) shapefile of all image locations (‘photopoints’). In TS1, due to
camera problems linked to the high ambient air temperature, two days
of transects had to be repeated, but this time as OCC-only without the
RSOs. Out of the total of 81 000 images acquired for TS1, 67 000 co-
incided with RSO recording. These simultaneous RSO-OCC transects are
shown in Fig. 1.

2.3. Height control and strip-width calibration

For TS1, the HAGL of 350 ft (107 m) was adopted according to
CITES-MIKE and PAEAS guidelines for RSO surveys (Craig, 2012;
PAEAS, 2014), and the pilot maintained HAGL with reference to a
logging laser altimeter recording at 1 s intervals. The logger failed after
5 days of flying, but standard 30 s visual recording of the laser read-out
by the front-seat-observer was maintained throughout the simultaneous
RSO survey according to PAEAS guidelines. This laser HAGL record was
used in the RSO-survey Jolly II analysis and calculation of densities for
paired transect analysis.

In TS2, height was controlled using the GPS-DEM method (Lamprey,
2016) which does not depend on the installation of laser or radar al-
timeters; only an aviation-quality GPS is needed. GPS-DEM measures
HAGL as the difference in elevation above mean-sea-level between the
aircraft navigation GPS and the terrain below, the latter determined
from the Shuttle Radar Topography Mission (SRTM) digital elevation
model (DEM) (SRTM version 4.1) (Jarvis et al., 2008). We refer to this
HAGL estimator as GPS/DEM-HAGL, or ‘GD-HAGL’. This method is
made possible by recent developments in GPS technology, the GPS
Standard Position Service (Kaplan and Hegarty, 2006; NTSB, 2018), the
estimated accuracy of the base SRTM model (Mukul et al., 2015;

Fig. 2. (a) Correlation of GD-HAGL with laser HAGL during the strip-width-calibration (closed circles) and during the TS1 survey (open circles), and (b) correlation of
OCC image strip width with laser-HAGL for left, right, and both cameras combined.
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Rodríguez et al., 2006), and the incorporation of the EGM96 and
EGM08 geoid into the model (Lemoine et al., 1998; Pavlis et al., 2012).
GPS accuracy, expressed as low ‘dilution of precision’, is particularly
high in central and eastern Africa (NTSB, 2018).

Strip-width-calibration (SWC) was conducted according to standard
methods (PAEAS, 2014) with flight overpasses at increasing HAGL
across ground-marks laid down at 20 m intervals on the base runway at
Voi airfield. HAGL was recorded from the ‘zeroed’ pressure altimeter,
laser altimeter, and, in post-hoc analysis, by GD-HAGL. Fig. 2 shows the
relationship between laser-HAGL, GD-HAGL and image strip width
from the SWC exercises of 12 March, where both cameras were pre-
cisely synchronized. As shown, the GD-HAGL to strip width relationship
proved consistent and precise. The continuous unbroken GD-HAGL re-
cord was used as the post-hoc height estimator for all OCC imagery of
both TS1 and TS2. Fig. 3 shows the Tsavo Core (TS1) SWC using GD-
HAGL, each camera side shown separately. Although there is scatter
due to turbulence-induced ‘wing-tilt’, the correlations are highly sig-
nificant, and the 95% confidence limits of the regression line intersect
the origin; we therefore use the simple coefficients of right strip (m)
= 0.4013 GD-HAGL (ft) and left strip (m) = 0.3668 GD-HAGL (ft) for
all computations of sample size in the Jolly II analysis. In TS1 the
achieved GD-HAGL was 367 ft ± 39.4 (SD, n = 81 007).

From the RSO and the OCC strip-width regressions, we determined
that the RSO strip (left and right combined) was 5.7% wider than the
OCC image strip, but for paired-transect comparisons based on animal
density this was compensated for by the separate strip-width calibra-
tions for the RSO and the OCC methods. Fig. 4 shows the geometry of
the counting strip in TS1 at 350 ft (107 m) HAGL, as defined through
the SWC and GE measurements, with the standard image footprint
covering 1.9 ha. Further details of HAGL, strip width and image foot-
print calibrations are given in Appendix B.

2.4. Image interpretation

Eight airphoto interpreters were employed, four university gradu-
ates from Uganda who had previous experience in interpretation for

wildlife census and land use surveys (Lamprey, 2005, 2016; Marshall
et al., 2017), and four recruited in Kenya who received training. All
eight interpreters undertook a guided fieldtrip to Tsavo for familiar-
ization with species and habitats.

The ‘key species’ for enumeration in TS1 and TS2 were elephant
(Loxodonta africana), buffalo (Sincerus caffer), Masai giraffe (Giraffa
camelopardalis ssp. tippelsckirchi) and elephant carcasses, the latter to
determine carcass ratios as an indicator of mortality and poaching
pressure (Douglas-Hamilton and Burrill, 1991; PAEAS, 2014). Carcasses
were recorded in two stages of decomposition, recent and old, rather
than the more common four stages (Douglas-Hamilton and Burrill,
1991), and were confirmed as elephant carcasses only if the skull or
lower jaw was present. The ‘supplementary species’ are those com-
monly observed in Tsavo (Cobb, 1976; Leuthold and Leuthold, 1976),
these being common zebra (Equus quagga ssp. burchelli), wildebeest
(Connochaetes taurinus), Coke’s hartebeest (Alcelaphus buselaphus ssp.
cokii), eland (Taurotragus oryx), lesser kudu (Tragelaphus imberbis),
greater kudu (Tragelaphus strepsiceros), oryx (Oryx beisa ssp. beisa),
impala (Aepyceros melampus), waterbuck (Kobus ellipsiprymnus ssp. el-
lipsiprymnus), gerenuk (Litocranius walleri), Grant’s gazelle (Gazella
granti), Thomson’s gazelle (Gazella thomsoni), warthog (Phacochoerus
africanus) and ostrich (Struthio camelus). Livestock species enumerated
included cattle (Bos indicus), camels (Camelus dromedarius), sheep (Ovis
aries) and goats (Capra hircus).

For image analysis, teams were divided into sub-teams of two in-
terpreters designated Uganda A/B and Kenya A/B. To present a sys-
tematic spatial allocation of transects to each interpreter, the assign-
ment of images followed a repeating roster, see Table 1. This
assignment is firstly by transect, sequentially allocated between Kenya
and Uganda teams; secondly by camera side, alternating between in-
country sub-teams A and B; and thirdly by even-odd number frames
alternating between the two members of the sub-team. Interpretation
was conducted using standard software for viewing JPG images and
EXIF files and for image annotation. For each assigned image the in-
terpreters in each sub-team entered the metadata to the hardcopy da-
tasheet; file and folder, date, time, transect, interpretation date, team.

Fig. 3. The image strip-width-calibration
(SWC) for left and right cameras using GD-
HAGL. Open symbols indicate data received in
the SWC, closed black symbols indicate data
derived from image footprints plotted on
Google Earth. The plot shows the 95% Cl of the
left and right camera regressions, based on the
slope and intercept. The regressions through
the origin were adopted for the transect sample
area analysis.
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They then visually scanned images for animals in a systematic sweep-
and-enlarge pattern, conferred with each other on species identification
and number, and annotated large herds for ease of counting. To avoid
double-counting in frame overlaps, all images with even-number coding
were total-counted, whilst odd-number images filled the gaps between.
The principle is shown in Fig. 4, where the animals shown as black dots
are assigned as 1 animal to image 1–139, 9–140, 3–141 and 5–142. The
image meta-data and species numbers were entered into hardcopy data
sheets, for transfer into Excel spreadsheets.

Fig. 5 show how this alternate-frame partition works in practice
with consecutive images of an elephant herd. Fig. 6 shows a complex
image with three species, indicating the challenges facing interpreters:
in this typical image, additional animals (eg giraffe calf) were detected
only after 10 min of re-interpretation.

2.5. Determining bias in image interpretation

In aerial wildlife surveys, bias causes a directional shift in enu-
meration or estimation, whilst errors are random and without direction
(Caughley, 1974; Gasaway et al., 1986; Norton-Griffiths, 1978). For
Tsavo, bias in estimation of ‘available animals’ can occur when an in-
terpreter (or RSO) (a) fails to see an animal(s) when an animal is pre-
sent (false negative or FALSE –ve); (b) reports an animal when there is
no animal (FALSE +ve); (c) consistently reports animals of one species
as another species (misidentification, with both FALSE +ve’s and
FALSE –ve’s); or (d) double-counts animals in a frame overlap (double-
counting).

Double-counting of animals in image overlaps is a potentially sig-
nificant source of bias, and we assessed this bias first, and in two ways.
Firstly, for key species, we checked each and every record against its
image to determine if the interpreters had correctly identified the

animals, had not double counted any animals in forward or backward
overlaps, and had correctly assigned the animals to even- or odd-
number images. This second count was implemented by a wildlife
specialist formally trained in airphoto-interpretation (the lead author).
Secondly, for the supplementary species, we determine whether double-
counting is significant by comparing the Jolly II estimates for the full
and alternate frame image datasets, the latter being point samples with
full-counts and no overlap.

The third step in detection of biases followed PAEAS (2014)
guidelines, where chi-squared tests are prescribed to test for differences
in species encounters between interpreters or interpreter teams. Mis-
counting may also be identified by comparing the total number of an-
imals of a species counted by interpreter teams; here, in order to escape
assumptions of distribution, we use the Mann-Whitney U-test, and the
Bayesian independent sample t-test. However, caution is needed in
drawing conclusions for species that occur in clumped distributions, for
example buffalo which are found in a relatively small number of large
herds.

Determining FALSE –ve’s in a dataset of 165 000 images requires
that a random sample of the images are re-interpreted for comparison
with the primary interpretation. Interpreters were re-assigned 11 553
random even-number images of TS1 and TS2 (a sample of 14% of even-
number images). There was an equal chance for any interpreter out of
the eight to be assigned a particular image. Let S1 = the animals seen in
the image by the first interpreter, but missed by the second; S2 = the
animals seen in the image by the second interpreter, but missed by the
first; B = the number of animals seen by both observers. For S1 or S2 for
both key and supplementary species, where one interpreter saw the
animal(s) but the other did not, each contested image was re-examined
by a skilled interpreter/ ecologist with a third ‘vote’ to assign the an-
imal to FALSE –ve or FALSE ve. For B-counts, if both interpreters were

Fig. 4. Diagrammatic image footprint string, left side camera, drawn to scale, for camera angle of 57°, TS1. Curved lines show the limits of the strip, without
correction for tilt-induced footprint spread. Randomized ‘segments’ as shown are selected and measured on Google Earth to determine correction factors for tilt.

Table 1
Example of assignment roster of images for interpretation teams Uganda A, Kenya A, Uganda B, Kenya B. UA1 and UA2 are the two interpreters of sub-team Uganda
A, and similar coding for the three other sub-teams. Strings of images are selected between transect start and end times. L/R = left or right camera; O/E = even/odd
image.

Date Transect Sub-Team Uganda A Kenya A Uganda B Kenya B

Start Time End Time UA1 UA2 KA1 KA2 UB1 UB2 KB1 KB2

12/3 76 06:55:32 07:01:28 L-O L-E R-E R-O
12/3 77 07:02:36 07:11:32 R-E R-O L-O L-E
12/3 78 07:15:58 07:25:16 R-E R-O L-O L-E
12/3 79 07:27:16 07:34:56 L-O L-E R-E R-O
12/3 80 07:37:04 07:46:04 L-E L-O R-O R-E
12/3 81 07:48:32 07:59:24 R-O R-E L-E L-O
12/3 82 08:01:50 08:13:58 R-O R-E L-E L-O
13/3 83 05:04:32 05:17:08 L-E L-O R-O R-E
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in agreement on species and numbers, the record was confirmed as
TRUE +ve; the third vote was used for the key species B-counts as re-
confirmation. To test for bias, we calculate the original unchecked
numbers of animals claimed by both primary and secondary inter-
preters (the original TRUE +ve’s) as TPO = (2 * B) + S1 + S2. We

compare with the same calculation after all third-party checking to
generate ‘corrected TRUE + ve’s’, where TPC = TPO + all FALSE –ve’s
– all FALSE +ve’s. A ratio of TPC / TPO approximating to unity in-
dicates that the double count yields similar estimates, and therefore any
misidentifications are errors without direction. A major departure from

Fig. 5. Principle of total count in alternate (even-number) images: the images have been cropped and enlarged for clarity. The elephants in image 0779 (frame 2017-
03-23-ATS-1-105-0779), are divided by the border line (black line) with elephants in even-number image 0780 (frame 2017-03-23-ATS-1-105-0780). Only 7 ele-
phants in frame 0779 are counted since the remainder of the herd (8 elephants) are counted in frame 0780.

Fig. 6. Image 2017-03-15-ATS-105-0724, an aggregation of three animal species under trees. These animals would not be detected in vertical aerial images.
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unity indicates that an interpreter might be biased in continuously
identifying one species as another.

For correction factors we followed double-observer ‘capture-re-
capture’ methods for RSOs developed in Australia (Caughley and Grice,
1982; Graham and Bell, 1989; Magnusson et al., 1978; Marsh and
Sinclair, 1989) to determine the ‘probability of detection’. The prob-
ability of detection of a species by the primary interpreters is defined as
P̂1 = B/(B + S2). We then extend this process to include into the
analysis those photos where the secondary interpreters detected ani-
mals on images where the primary interpreters did not, where P̂2 = B/
(B+S1). With each interpreter, primary and secondary, having an equal
chance of finding animals on the same image, the detection factor, P̂d,
then becomes the average of P̂1 and P̂2. The correction Cd to be applied
to the Jolly II estimate is then 1/P̂d.

In our sample of 11 553 re-interpreted images we encountered
elephants in just 44 of them, between B, S1 and S2 above. For the cal-
culation of P̂d for supplementary species, we generated a sample of 80
images of encounters by aggregating hartebeest, eland, oryx and wa-
terbuck into a group class termed ‘large brown antelopes’ (LBAs), and a
larger sample of 97 images of ‘all brown antelopes’ that include LBAs,
plus impala and the gazelles.

2.6. Implementation of comparative RSO surveys

The simultaneous RSO sample-count was conducted according to
current accepted standards for aerial strip-transect sample counts
(Craig, 2012; PAEAS, 2014), with professional RSOs working for gov-
ernment wildlife agencies and livestock programmes. Recording was by
the ‘sub-unit method’, where animal observations were assigned by
RSOs to 2.5 km subunits along the transect, called out by the front-seat-
observer. Large groups of key species, eg herds ≤10 animals, were also
photographed by the RSOs with window-mounted cameras for later
counting. The subunits became the smallest unit of comparison of RSO
and OCC counting, which presents a constraint to close matching of
RSO to OCC records. The subunit in our case is a 2.5 km segment tra-
versed in just 50 s, and an overloaded RSO might delay a record until
the next subunit. In general, in considering the subunit as the closest
match, for example in determining animal visibility by vegetation type,
there will be enough coincident observations for comparison. Where
more precision is needed in comparing numbers counted, albeit with a
smaller number of samples, we use the transect as the paired sample
unit.

For TS1 and TS2, a further comparison is the 2017 Tsavo Total
Count, implemented to methods that have evolved over three decades.
In 2017 the target species were elephants, buffalos and giraffes, and
elephant carcasses in four decomposition categories (Douglas-Hamilton
and Burrill, 1991; Douglas-Hamilton et al., 1994; Ngene et al., 2017).
The Tsavo ecosystem was divided into 91 blocks which were system-
atically searched at 1 km transect intervals, at 400–600 ft (122–183 m)
altitude by 10 aircraft and crews. Animal sightings were recorded using
GPS receivers and large herds were photographed for later counting.
Being a count of all animals (as attempted), total count population es-
timates have no estimates of precision – we cannot calculate confidence
intervals for them.

2.7. Comparison of RSO and OCC methods

Initial analysis was conducted using the standard Jolly II ratio-
method, where the strip-transects are the sample units (Caughley, 1977;
Jolly, 1969; Norton-Griffiths, 1978), with area calculated as length x
average width. For OCC we assume there are no significant gaps in the
imaged transect that would reduce this sampled area. In our second
approach, allied to aerial point sampling, only even-number photos are
included, and the sample area for transect = …Z A( )i where A is the
area (hectares) of the ith even-numbered image. The disadvantage of
the point sample approach is that the area of each frame footprint must
be derived from a careful footprint / GD-HAGL calibration, and that
some 40% of the sample, the overlap area, is not used in the estimate.

For survey TS1, we initially compare RSO and OCC population es-
timates using Jolly II. However, this approach is coarse since Jolly II
measures the variance between transects of an independent survey,
rather than between paired transects. We therefore test for differences
between the paired transects or subunits; the former provide a sufficient
sample size. To avoid complications of sample-area / animal-count
covariance, we initially used 49 equal-length transects measuring
27.5 km x 0.286 km (11 subunits x the mean strip width) within the
TS1 dataset (see Fig. 1). This yields 2 × 1347.5 km of coincident RSO-
OCC recording, based on 32 000 images. We test for differences using
the basic paired t-test and the non-parametric Wilcoxon signed-ranks
test.

We then compare estimates using the entire simultaneous RSO-OCC
dataset of 67 000 images captured in 2 x 3004 km of sample strips,
making no assumptions about the distribution of the data. We repeat
the Wilcoxon signed-ranks test, and conduct the Bayesian inference t-
test, computed in JASP as an interface to R, which computes a ‘weight’
of probabilistic evidence (the Bayes Factor - ‘BF’) derived from con-
tinued inclusion of paired data (Ellison, 1996; Kruschke, 2013;
Marsman and Wagenmakers, 2017). We conduct the analysis on the
basis of a ‘prior’ that OCC counts are higher than RSO counts.

For TS2 the only comparison to be made with RSO counting is with
2017 Tsavo Total Count. Here, we determine the probability of the
Total Count results lying within the 95% confidence limits of the OCC
count.

3. Results

Initially we tested the OCC results for interpretation biases that
might compromise accuracy and precision. We then compared the RSO
counts and OCC counts by transect using standard parametric, non-
parametric and Bayesian paired-sample methods. Counts from both
methods were processed using the standard Jolly II procedure (Jolly,
1969) to generate population estimates and standard errors for the
survey area for further comparison as independent samples. For key
species the results of both the OCC and RSO counts were then compared
with the 2017 Total Count that had been carried out a month pre-
viously.

3.1. OCC counting bias and probability of detection

Ahead of any analysis, for the key species we determined correct
identification and evidence of double-counting by re-checking every

Table 2
Results of re-interpretation and revision of all records for key species.

Number of original images with species Original count Records revised New Count % change

Elephant 466 1 597 110 1 494 −6.45%
Buffalo 162 1 383 47 1 263 −8.68%
Giraffe 182 310 18 299 −3.55%
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record against its image and neighbouring images. This indicated al-
most 100% correct identification, but removal due to double-counting
reduced the elephant counts by 6.45%, buffalos by 8.68% and giraffes
by 3.55%, see Table 2. Checking was also conducted for supplementary
species with herd size ≤ 10 animals. Double counting for both key and
supplementary species is again tested in the even-frame point sample
approach for Jolly II, indicated in the next section.

We then compared encounter rates of different species between the
Uganda and Kenya country teams, see Table 3. Applying the PAEAS
observer-comparison guidelines (PAEAS, 2014), differences are not
significant for elephant (encounters 211 and 222 respectively, χ2 =
0.28, p = 0.597) and buffalo (69 vs 67 encounters, χ2 = 0.03,
p = 0.864). The Uganda team had more encounters than the Kenya
team for giraffe (101 vs 73 encounters, χ2 = 4.51 p = 0.034), but after
Holm-Bonferroni correction (Holm, 1979) this may not be considered
significant (adjusted p’ = 0.304). Differences were significant for car-
casses, waterbuck, gerenuk, impala and warthog. For actual numbers
counted, where we tested our null hypothesis of no-difference using
Mann-Whitney U- tests and Bayes independent sample t-tests, differ-
ences between teams were not significant for most species except for
carcasses, (U = 273, p = 0.028, BF10 = 3.515), warthogs (U = 55,
p < 0.020, BF10 = 1.470), and Grants’ gazelle (BF10 = 1.760), where
again the Uganda team detected more of these targets. In general, we

are comfortable with the consistency of interpretation between the two
teams for the key variables of Tsavo, with the exception of carcasses, for
which correction factors may be applied.

For the 11 553 random image re-interpretation of even-number
images, all cases of S1, S2 and B (both) observations for the key species
were independently re-scrutinized. No FALSE –ve’s, of key species were
identified. The probability of detection of available animals, Pd, is
96.3% for elephants, 92.6% for buffalo, 90.9% for giraffe, 78.2% for
zebra, 67.7% for LBAs and 67.1% for all antelopes, see Table 4. Carcass
detection was lower at 60.0%. Overall, these results indicate that key
species detection by interpreters is generally satisfactory, but that some
33% of antelopes are missed and 40% of carcasses.

The derived correction factors Cd are also indicated in Table 4, and
the Jolly II estimates ŶO (see below) may be corrected as ŶOc = Cd x ŶO.
The boxes indicate the misidentification of a single herd of 21 eland as
oryx by one interpreter (S1), with the result that on the 3rd party vote
these were ascribed as eland FALSE –ve’s, and hence added as eland
TRUE +ve’s. If we adjust for this misidentification, the correction
factor Cd for oryx then drops from 2.2 to 1.9, whilst for eland TPR/TPO

is recalculated as 109%. The correction factors Cd increase all OCC
estimates, with oryx being a significant case in point where even in-
terpreters miss half of them. However, we use only the uncorrected ŶO

for comparisons of counts, unless otherwise stated.

Table 3
Testing for differences in species encounter rates and numbers between the Uganda and Kenya country teams, using χ2 on encounters and the Mann-Whitney U test
and Bayesian independent sample t-test for tests on numbers. The Bayes t-test determines evidence for the null hypothesis of H0 (no difference), in this case with no
prior assumption of a directional difference between RSO and OCC.

Row Labels Kenya Encounters Uganda Encounters Chi-squared Kenya, Number Uganda, Number Mann-Whitney Bayes Inference t-test

χ2 p U-statistic p BF10 Evidence for H0

Elephant 221 211 0.28 NS 763 705 955 NS 0.250 Moderate
Carcass-all 38 104 30.68 < 0.001 39 107 273 0.028 3.515 Moderate reject
Buffalo 67 69 0.03 NS 670 593 288 NS 0.285 Moderate
Giraffe 73 101 4.51 NS 118 181 414 NS 0.634 Anecdotal
Zebra 116 125 0.34 NS 644 661 680 NS 0.249 Moderate
Hartebeest 38 48 1.16 NS 123 144 138 NS 0.465 Moderate
Eland 24 30 0.67 NS 72 100 112 NS 0.336 Moderate
Oryx 59 40 3.65 NS 228 229 238 NS 0.297 Moderate
Waterbuck 17 65 28.1 < 0.001 35 130 163 NS 0.382 Anecdotal
Impala 21 43 7.56 < 0.01 125 225 155 NS 0.336 Anecdotal
Grant’s G. 40 32 0.89 NS 112 58 109 NS 1.760 Anecdotal reject
Thom. G. 11 12 0.04 NS 36 37 39 NS 0.494 Anecdotal
Gerenuk 25 50 8.33 < 0.01 64 70 193 NS 0.691 Anecdotal
Warthog 8 105 83.27 < 0.001 15 172 55 0.020 1.470 Anecdotal reject

Table 4
Results of re-interpretation of random 11 553 even-number images to determine TRUE +ve, FALSE +ve, FALSE –ve. S1 = the animals seen by first interpreter, but
missed by second; S2 = the animals seen by the second interpreter, but missed by first; B = animals seen by both interpreters. Pd = the average probability of
detection between the two interpreters, Cd = correction factor for the Jolly II estimates. TPO = animals originally recorded in first interpretation, TPC = corrected
TPO after addition of FALSE –ve’s and subtraction of FALSE +ve’s. The italicized numbers include one herd of 21 eland mis-identified as oryx by the S1 interpreter
(see text).

S1 S2 B TRUE +ve TPO FALSE +ve FALSE –ve TRUE +ve TPC TPC/TPO Pd Cd

Elephant 6 6 154 320 0 5 325 102% 96.3% 1.04
Carcass 8 14 16 54 4 19 69 128% 60.0% 1.67
Buffalo 2 4 37 80 2 3 81 101% 92.6% 1.08
Giraffe 6 5 55 121 1 10 130 107% 90.9% 1.10
Zebra 56 56 201 514 40 29 503 98% 78.2% 1.28
Hartebeest 14 40 67 188 14 12 186 99% 72.7% 1.38
Eland 7 26 67 167 8 45 204 122% 81.3% 1.23
Oryx 42 17 22 103 23 22 102 99% 45.4% 2.20
Waterbuck 7 6 10 33 4 8 37 112% 60.7% 1.65
Impala 14 20 77 188 17 34 205 109% 82.0% 1.22
Grant’s G. 22 27 15 79 18 51 112 142% 38.1% 2.62
Thom. G. 11 2 1 15 11 5 9 60% 20.8% 4.80
LBAs 70 89 166 491 49 87 529 108% 67.7% 1.48
All antelopes 117 138 259 773 95 177 855 111% 67.1% 1.49
All Animals 187 209 706 1808 138 224 1 894 105% 78.1% 1.28
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3.2. TS1, Jolly II analysis and OCC-RSO comparison

Table 5 presents the Jolly II analysis for TS1 for both the RSO and
OCC methods. RSO estimates (ŶR) are based on the laser HAGL cali-
bration, OCC estimates (ŶO) on GD-HAGL calibration. We conclude that
OCC estimates ŶO for giraffe, zebra, kudu, waterbuck, impala,
Thompson’s gazelle, gerenuk and warthog are significantly higher
(α = 0.05) than the corresponding RSO estimates ŶR. For giraffe, the
difference in estimates is highly significant, where the RSOs missed
56% of the giraffe (ŶO-ŶR)/ŶO), this increasing to 60% if we consider
the corrected estimates ŶOc. Re-analysis of the TS1 OCC data based on
laser-HAGL and strip-width calibration (see Fig. 2) rather than GD-
HAGL, indicates no significant difference with the Jolly II estimates,
with for example the Core elephant population now indicated as 12
714 ± 1775 (SE) and giraffe as 2 544 ± 383 (SE).

Table 5 also shows, for the main species, the estimates derived from
even-frame estimation to test for double-counting. Even-image point
sample estimates are very close to all-image estimation. This suggests
that the post-hoc checking process for key species has essentially
eliminated double-counts, whilst for supplementary species the process
of allocation to even-number frames at the interpretation stage, without
subsequent correction, has also been effective.

Selecting the equal-length transects in TS1 as the paired samples for
density (see Fig. 1), the Shapiro-Wilks test indicates significant de-
partures from normality (p < 0.001) for all species, although for ele-
phants this is the least significant (W = 0.953, p = 0.047). Table 6
shows, for pair-wise comparison of species densities (animals per unit
area), the paired sample t-tests for equal-length coincident RSO-OCC
transects. In combination the t-tests (2-tailed) and Wilcoxon-signed
rank tests indicate that OCC density estimates for elephant, giraffe,
zebra, eland, kudu, oryx, waterbuck, impala, Grant’s gazelle, warthog
and the LBAs are significantly higher (at α = 0.05) than RSO estimates.

Differences in carcasses, buffalo and hartebeest were not significant.
Fig. 6, an OCC TS2 image, shows graphically how even large animals
may be virtually invisible in the landscape, whilst Fig. 7 shows an ex-
ample from TS1 where RSOs have missed a herd of oryx recorded in the
OCC imagery.

Table 6 also shows the Wilcoxon paired-sample tests, and the Bayes
factors for prior OCC > RSO (BF+0) for the full OCC-RSO coincident
dataset. Both tests demonstrate that the OCC method counts sig-
nificantly more elephants than the RSO method, with Wilcoxon W
statistic = 1242, p = 0.003, and the Bayes Factor BF+0 = 16.95, in-
dicated as ‘strong’; in other words, ‘for elephants it is nearly 17 times
more likely that OCC counts > RSO counts, compared with the null
hypothesis of no difference’. In support of OCC > RSO, differences for
giraffe, zebra, hartebeest, eland, kudu, waterbuck and impala are now
highly significant. The difference for the LBA combination, with Wil-
coxon W statistic = 1479, p < 0.001, and Bayes Factor BF+0 =
4472.85, is now indicated under Bayes terminology as ‘extreme’. Car-
casses differences are estimated as ‘strong’ in the opposite way
(RSO > OCC), with RSOs estimating more than OCC, but this is ac-
counted for by the lower carcass detection of the Kenya interpreters,
who detected 37% of the Uganda team total (see Table 3). For buffalo,
the weight is also in favour of higher estimation by RSOs; this may be
down to double-counting on RSO image strings, but this needs to be
examined further. Bayes Factor prior and posterior plots for elephants,
giraffe, zebra and LBAs are shown in Appendix C.

As a first stage in analysing the effect of group size on detection, we
compare elephant counts in subunits with only OCC-detection with
counts with joint OCC-RSO detection. For the sample of OCC-only
‘elephant positive’ subunits, the average group is 4.26 elephants
± 1.141 (95% cl, n = 78), compared with joint RSO-OCC detection
with the higher group size of 5.95 ± 1.069 (95% cl, n = 116)
(t = 2.065, p = 0.040, df = 192). This implies that elephant group size

Table 5
Jolly II estimates (Ŷ) and standard errors (SE) for OCC (ŶO) and RSO (ŶR) in survey TS1 (Tsavo Core), with comparison using the t-statistic (Norton-Griffiths, 1978).
Estimates and standard errors in parentheses are derived from the even-frame (point sample) estimation. RSO ‘non-detection’ of animals available on the OCC
imagery is calculated as ŶO-ŶR)/ ŶO (%) with non-detection also indicated where OCC estimates are corrected as ŶOc = ŶO x Cd (see Table 4). The last column
indicates the difference of corrected OCC estimates over the RSO estimates, where Δ% = (ŶOc/ ŶR)-1 (‘how much greater are OCC estimates?’).

OCC estimates RSO estimates t-statistic p RSO non-detection with ŶO RSO non-detection, with ŶOc OCC vs RSO, Δ%

Variable ŶO SE ŶR SE

Elephant 12 357 1 814 11 074 1 347 0.57 0.573 10% 14% 16%
(12 258) (2 204)

Carcass, recent 91 29 17 12 2.36 0.022 81%
Carcass, old 1 117 155 1 529 227 1.50 0.140 −37%

(1 076) (184)
Carcass, all 1 208 162 1 546 225 1.22 0.228 −28% 23% 30%
Buffalo 10 453 2 529 13 110 3 848 0.58 0.566 −25% −16% −14%

(10 618) (2 858)
Giraffe 2 475 386 1 090 184 3.24 0.002 56% 60% 150%

(2 510) (413)
Zebra 10 801 1 550 7 173 1 355 1.76 0.084 34% 48% 93%

(11 086) (1 665)
Hartebeest 2 210 438 1 278 294 1.77 0.083 42% 58% 138%

(2 261) (454)
Eland 1 424 431 611 361 1.45 0.154 57% 65% 187%
Kudu 687 159 94 27 3.68 0.001 –
Oryx 3 782 775 2 148 675 1.59 0.118 43% 74% 288%

(3 875) (988)
Waterbuck 1 366 264 434 133 3.15 0.003 68% 81% 419%
L.B.Antelopes 8 782 1035 4 471 852 3.22 0.002 49% 66% 190%
Impala 2 897 527 315 132 4.75 < 0.001 89% 91% 1022%

(2 634) (677)
Grant’s gazelle 1 407 313 1 065 281 0.81 0.420 24% 71% 247%
Thomson’s gaz. 604 166 229 82 2.03 0.048 64% 92% 1166%
Gerenuk 1 109 175 34 20 6.10 < 0.001 97% – –
Warthog 1 548 194 239 61 6.44 < 0.001 85% – –
Ostrich 662 223 603 131 0.23 0.820 9% – –
Cattle 42 284 13 273 37 168 17 414 0.23 0.816 12% – –
Shoats 18 183 3 360 12 313 3 253 1.26 0.215 32% – –
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influences detectability by RSOs (Schlossberg et al., 2016). Further tests
on disaggregated subunit data are required to explore group size as a
factor of visibility for a range of species.

3.3. Comparison of TS1 and TS2 Jolly II estimates with the 2017 Tsavo
Total Count

For TS2 we have no comparative RSO sample count data, and there-
fore we use these Jolly II stratum estimates in an ecosystem-wide com-
parison of the OCC results (uncorrected) with the 2017 Total Count which
enumerated elephant, buffalo, giraffe, and elephant carcasses, see Table 7.
The Total Count estimate of elephant and buffalo fall near the lower 95%
cl of the OCC ŶO estimates, and giraffe fall well below. Z-tests indicate a
low probability of the Total Count elephant estimate lying within the Jolly

II confidence intervals for ŶO (Z = 1.917, p = .0276), whilst the prob-
ability for buffalo in Core is also low (Z = 1.937, p = .0262), but higher
for the entire ecosystem (Z = 1.279, p = 0.1000). Using a 1000-iteration
bootstrap with replacement (Diciccio and Romano, 1988) for the elephant
Jolly II estimates for TS1, the lower percentile-based 95% cl estimate is
indicated as 9410 elephants, in comparison with the Total Count estimate
of 9363 elephants; the bootstrap approach however, requires further in-
vestigation. The conclusion is that OCC ŶO estimates are significantly
higher than those of the Total Count by 31% for elephant, 39% for buffalo,
112% for giraffe and 293% for carcasses. The corrected OCC ŶOc estimates
are higher by 37%, 54%, 137% and 532% respectively for these species.
Finally, Table 8 shows, for completeness, the results for all other species
for the combined strata of the Tsavo Conservation Area.

Table 6
Comparison of RSO and OCC densities for the equal-length and all coincident transects using t-tests (df = 48 and df = 67 respectively), Wilcoxon signed-ranks test
and the Bayes inference t-test. The raw count numbers are indicated, these are then converted into densities for the tests. Cattle and shoats were not encountered in
the equal-length transects in TS1.

Equal-length transects All coincident transects

Numbers counted t-test Wilcoxon Numbers counted Wilcoxon Bayes inference
t-test

Species OCC RSO t-test p W p OCC RSO W p BF₊₀ Evidence
Elephant 610 494 2.674 0.010 738 0.013 1022 891 1242 0.003 16.95 Strong
Carcass, old 27 49 −2.324 0.024 175 0.061 85 144 427 0.003 0.03 V. strong, null
Buffalo 489 589 −1.338 0.187 66 0.251 772 920 233 0.776 0.06 Strong, null
Giraffe 119 62 2.689 0.010 322 0.001 208 105 643 < .001 43.05 V. strong
Zebra 434 254 2.316 0.025 309 0.004 1076 736 977 < .001 34.98 V. strong
Hartebeest 98 62 1.787 0.080 61 0.092 200 118 241 0.036 4.03 Moderate
Eland 60 16 2.723 0.009 74 0.007 130 59 248 < .001 19.70 Strong
Kudu 23 3 2.183 0.034 69 0.021 44 6 231 < .001 36.08 V. Strong
Oryx 91 58 1.47 0.148 131 0.05 331 205 316 0.034 1.17 Anecdotal
Waterbuck 97 37 2.289 0.027 249 0.005 138 45 618 < .001 29.96 Strong
Impala 71 17 2.137 0.038 76 0.036 170 20 258 < .001 85.73 V. strong
Grant's 120 53 1.936 0.059 155 0.017 157 101 398 0.087 0.92 Anecdotal
Warthog 94 12 4.073 < .001 416 < .001 170 25 997 < .001 59 814 Extreme
LBAs 354 180 3.655 < .001 652 < .001 843 433 1479 < .001 4 472 Extreme
Cattle N/A 4 965 4 222 353 0.014 0.43 Anecdotal
Shoats N/A 2 097 1 399 348 0.005 1.97 Anecdotal

Fig. 7. In cloud-shadow conditions, this group of nine oryx (yellow circles) were not detected by the RSOs (image 2017-03-15-AKP-1-117-0147). By subunit and
camera side, RSOs missed 38% of oryx by number, 24% by group.

R. Lamprey, et al. Biological Conservation 241 (2020) 108243

11



4. Discussion

We describe an aerial strip-transect method where a camera system
is used to simultaneously image the entire sample strip observed by
RSOs. The imaging system comprises off-the-shelf 24-megapixel digital
cameras that are set up with lens focal lengths, angles and shutter
speeds to capture a standard SRF strip with a ground-sampling-distance
of approximately 3–6 cm, sufficiently small to resolve animals down to
gazelle size. This method permits a very careful scrutiny of the strip for
animals; the image may be frozen for minutes or even hours whilst
interpreters may literally ‘look under every bush’.

We rigorously tested the interpretation procedure for biases before
comparing the method with RSO counts. For the majority of key and
supplementary species we find no significant differences between two
interpreter teams, working separately in two countries, in encounters of
herds or numbers counted. Using protocols for assigning wildlife to
alternate (‘even-number’) frames, we show that interpreters effectively
avoided double-counting in frame overlaps. However, in random repeat
counts, we also show that whilst interpreters were detecting over 90%
of the key species, this dropped to 67% for the large antelopes. Clearly
there are many available antelopes ‘out there in the imagery’ that the
interpreters did not detect. From the probability of detection, we derive
correction factors (Cd) to offset these species-specific biases.

Applying the correction factors to derive corrected OCC Jolly II
estimates (ŶOc), we then determine that the sample-count RSOs did not
detect 14% of elephants, 60% of giraffe and 66% of the large antelopes,
hartebeest, eland, oryx and waterbuck. Again using ŶOc, we conclude
that the Total Count observers did not detect 27% of elephant, 35% of
buffalo, 58% of giraffe and 84% of carcasses

We do not believe these differences to be an anomaly of perfor-
mance of our sample-count RSOs. Our observers generated elephant
estimates that are similar to, or higher than, other recent sample-count
surveys. For example, for Tsavo Core our RSO-count estimated 11 074

elephants ± 1347 (SE), compared with 10 716 ± 1315 (SE) estimated
by the Great Elephant Census survey of 2014 (Chase et al., 2014). The
2011 and 2014 government-implemented SRFs of the entire Tsavo
ecosystem generated RSO-based elephant population estimates of 11
358 ± 2350 (SE) and 10 958 ± 2565 (SE) respectively (Ogutu et al.,
2016). Our RSO zebra and oryx estimates, extrapolated to the eco-
system by density, are at least 50% higher than these two counts, whilst
giraffe estimates are similar.

It is well known that SRF counts using RSOs produce highly variable
results. Whilst this research points to the possibility of applying uni-
versal or retrospective correction factors for RSO-counts, this should be
done with great caution. Firstly, the visibility characteristics of species
vary in different environments and in different seasons. In the green
landscape of Murchison Falls National Park, Uganda, for example, both
RSO- and OCC-counts enumerated Rothschild’s giraffe closely to the
known population, all members of which had been identified and
counted through coat markings (Lamprey, 2016; Wanyama et al.,
2014). In the arid bushlands and plains of Tsavo in 2017, Maasai giraffe
blended into the beige landscape and RSOs missed over half of them.
The low detection of giraffe by RSOs has also been recorded in semi-
arid environments in Tanzania (Lee and Bond, 2016). The second
reason for caution is that performance is highly variable between ob-
servers. In the Tsavo RSO-count, for example, most species were en-
umerated fairly consistently between left and right RSOs, but one RSO
saw eight groups of impala (total 566 animals), the other just one (81
animals). With regard to historical SRFs, the counts of individual RSOs
are usually lost to the record, and we have no possibilities for correcting
for individual observer bias.

In addition to the advantages of improved accuracy and precision,
the entire survey record can be revisited at later stages by third parties
for further checking, re-interpretation, processing and certification.
Another advantage, also indicated in similar studies (Erwin, 1982;
Frederick et al., 2003; Terletzky and Ramsey, 2016; Xue et al., 2017), is
that interpretation does not require highly skilled practitioners. During
the nine months of interpretation, three of the eight interpreters de-
parted and were replaced by incoming university graduates who, after
short training, performed as well as their more experienced colleagues
with no biases that could be detected. This shows that the paired-in-
terpreter team approach works well for mentoring incoming inter-
preters.

Imaging methods also have applications for line-transect surveys, to
meet the primary assumption of 100% detectability on the line. In
aerial distance-sampling in Kruger National Park in South Africa by
fixed-wing aircraft, difficulties in assessing probability of sighting on
the line and in defining species-specific distance visibility profiles have
cast some doubt on the usefulness of aerial line-transects for complex
multi-species counts in Africa (Kruger et al., 2008). With imaging
techniques, we have more certainty that all, or almost all, animals on
the line are detected, improving the accuracy of models. In addition,
follow-up analyses may interpret the images for new variables, to de-
termine visibility with respect to group size, vegetation cover,

Table 7
OCC estimates (ŶO) and 95% confidence limits by stratum for elephants, buffalo, giraffe and elephant carcasses, for comparison with the 2017 Tsavo Total Count
estimates. Figures in parentheses are the corrected estimates ŶOc, using the correction factors of Table 4.

Elephant Buffalo Giraffe Elephant Carcass

ŶO 95% cl Total Count ŶO 95% cl Total Count ŶO 95% cl Total Count ŶO 95% cl Total Count

Core 12 357 3 556 9 363 10 453 4 957 5 555 2 475 756 1 055 1 208 318 573
South 3 002 1 760 2 548 1 197 1 023 2 297 3 789 1 329 1 583 2 091 510 338
North 491 475 293 175 192 544 316 382 118 140 102 60
N-West 302 359 195 0 0 125 1 207 657 1 030 78 49 20
East 529 528 323 0 0 1 465 320 105 828 278 115
TOTAL 16 681 4 047 12 722 11 826 5 065 8 522 8 251 1 737 3 891 4 345 680 1 106
ŶOc (17 331) (4 205) (12 777) (5 262) (9 075) (1 805) (7 242) (706)

Table 8
OCC Jolly II population estimates (ŶO) and standard errors (SE) of supple-
mentary species for the Tsavo ecosystem.

Species ŶO SE

Zebra 28 871 3 788
Wildebeest 758 277
Hartebeest 8 259 1 966
Eland 3 563 729
Kudu, lesser 1 564 270
Kudu, greater 617 148
Oryx 8 894 1 422
Waterbuck 2 105 594
Impala 6 639 1 360
Gazelle, Grant's 4 982 820
Gazelle, Thomson's 1 055 248
Gerenuk 2 204 339
Warthog 4 528 734
Ostrich 2 428 533
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topography, ambient light and sun-angle conditions (Jacques et al.,
2014; Ndaimani et al., 2017; Norton-Griffiths et al., 2015).

The main disadvantage of the OCC method in its current stage of
evolution is that it is labour intensive. For the 165 000 images of TS1
and TS2, the 8 interpreters worked for 9 months, each interpreting
200–230 images per day. Labour expenses increased the cost above that
of the traditional RSO-based SRF, but by no more than 27% if student-
rates are applied. At the same time, much of this labour is expended on
searching TRUE –ve's, the images with nothing in them. For example, in
Tsavo TS1 only some 1814 out of 81 008 images, or just 2.2%, had any
target wildlife species in them. In total only 435 images, or 0.54%, had
elephants. Therefore, this experimental OCC, while producing greater
estimates for most species, should be regarded as an initial step towards
more automated counting by machine learning, where computers can
flag the ‘presence-of-animal’ for further investigation (Laliberte and
Ripple, 2003; McMahon et al., 2014; Terletzky and Ramsey, 2016; Yang
et al., 2014): great progress has already been made in the machine
processing of camera trap imagery for animal identification
(Norouzzadeh et al., 2018; Tabak et al., 2019), which can be improved
further when this is incorporated with citizen science methods (Willi
et al., 2019). Further analysis of the Tsavo dataset, can explore sub-
sampling the records to determine how the volume of imagery can be
reduced for visual interpretation (Norton-Griffiths et al., 2015). The
even-image point-sample approach used in this study is a first step in
this investigation. A further practical step towards improving the OCC
method is the use of gimbals to stabilize cameras, and therefore im-
prove the stability of the strip width.

The OCC method has applications for the use of unmanned aerial
vehicles (UAVs) in aerial wildlife counting. Soon lightweight cameras
will be available that will have the high pixel-densities required to
achieve a ground-sampling-distance of 5 cm or less when operated in
drones flying at low level, for example at 400 ft above-ground-level.
There has been some success in using UAVs for image-based strip-
transect counts for elephants in West Africa (Vermeulen et al., 2013),
but the overall constraint remains their endurance, speed and relia-
bility. As calculated by sampled area for the West Africa trial area of
940 km2, the cost of implementing the UAV surveys was 10 times
higher than using conventional light aircraft, without human resource
costs included. For the vast area of Tsavo (34 000 km2), a UAV might
not complete a single transect, but increases in UAV endurance suggest
that smaller areas of perhaps 200 km2 might be surveyed at useful
sample intensities of 5–10% at costs similar to a light aircraft.

The implications of image-based counting methods for inventorying
wildlife populations are significant. Recent assessments of the state of
Kenya’s wildlife, based on 40 years of RSO-based surveys, indicate
major declines across most rangeland areas (Ogutu et al., 2016). This
situation is particularly serious for Taita-Taveta County, of which Tsavo
National Park occupies 62% of the land area, where for example it is
reported that eland and oryx have declined by 43.5% and 56.5% re-
spectively since 1977. Our results provide some more positive news for
certain species. For example, giraffe are now categorized as Vulnerable
on the IUCN red list (Muller et al., 2016), and the OCC results for Tsavo
increase Kenya’s known population of the Maasai giraffe subspecies
(Giraffa camelopardalis ssp. tippelsckirchi) by 41% from 12 717 (Ministry
of Tourism and Wildlife, 2018) to 17 890. Similar results might be
obtained if image-based sample counts were to be conducted in the
northern Kenya range of the Endangered (IUCN-Redlist) reticulated
giraffe (Giraffa camelopardalis ssp. reticulata), with an estimated popu-
lation of 11 048. We believe that image-based aerial survey methods
will enable us to reset baselines for the future monitoring of wildlife
over Kenya’s rangelands and protected areas.

5. Conclusions

We use high-resolution camera systems to acquire images of sample-
strips in tandem with rear-seat-observers in an aerial wildlife count in

Tsavo, Kenya. The primary finding is that for large-area systematic
reconnaissance flight (SRF) counts in Kenya, imaging methods generate
wildlife population estimates that are significantly higher than ob-
server-based methods, ranging from 17% higher for elephant to 150%
higher for giraffe, zebra and large antelopes. Comparisons with total
counts derive similar results. This implies that observer-based counting
methods conducted in East Africa over the last 60 years have sig-
nificantly underestimated some wildlife populations. Further work is
needed to streamline the acquisition and interpretation process, with
image subsampling, machine learning and the continued development
of UAVs being important avenues for research. At the same time, efforts
should be made to recalibrate historical observer-based SRF datasets to
reset baseline estimates of wildlife populations.
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