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Abstract: Landscape planning that ensures the ecological integrity of ecosystems is critical in the face of rapid
human-driven habitat conversion and development pressure. Wildlife tracking data provide unique and valuable
information on animal distribution and location-specific behaviors that can serve to increase the efficacy of such
planning. Given the spatiotemporal complexity inherent to animal movements, the interaction between move-
ment behavior and a location is often oversimplified in commonly applied analyses of tracking data. We analyzed
GPS-tracking-derived metrics of intensity of use, structural properties (based on network theory), and properties
of the movement path (speed and directionality) with machine learning to define homogeneous spatial move-
ment types. We applied our approach to a long-term tracking data set of over 130 African elephants (Loxodonta
africana) in an area under pressure from infrastructure development. We identified 5 unique location-specific
movement categories displayed by elephants, generally defined as high, medium, and low use intensity, and 2 types
of connectivity corridors associated with fast and slow movements. High-use and slow-movement corridors were
associated with similar landscape characteristics associated with productive areas near water, whereas low-use
and fast corridors were characterized by areas of low productivity farther from water. By combining information
on intensity of use, properties of movement paths, and structural aspects of movement across the landscape, our
approach provides an explicit definition of the functional role of areas for movement across the landscape that we
term the movescape. This combined, high-resolution information regarding wildlife space use offers mechanistic
information that can improve landscape planning.

Keywords: animal movement, connectivity, clustering, GPS radio telemetry, graph theory, landscape planning,
movement corridor, network theory, space use

Caracterización del Paisaje de Movimiento para Identificar Hábitats y Corredores de Fauna Importantes

Resumen: La planeación de paisajes que asegura la integridad ecológica de los ecosistemas es muy importante
de cara a la rápida conversión de hábitats llevada por la acción humana y la presión del desarrollo. Los datos
de rastreo de fauna proporcionan información única y valiosa sobre la distribución animal y el comportamiento
específico por localidad que puede servir para incrementar la eficiencia de dicha planeación. Dada la complejidad
espaciotemporal inherente al movimiento animal, la interacción entre la conducta de movimiento y la ubicación
con frecuencia se ve sobre simplificada en los análisis de información de rastreos aplicados comúnmente. Anal-
izamos las medidas derivadas de rastreos por GPS de la intensidad de uso, las propiedades estructurales (basadas
en la teoría de redes) y las propiedades de la vía de movimiento (velocidad y direccionalidad) con aprendizaje
automatizado para definir los tipos de movimiento espacial homogéneo. Aplicamos nuestra estrategia a un con-
junto de datos de rastreo a largo plazo de más de 130 elefantes africanos (Loxodonta africana) en un área bajo
presión ocasionada por el desarrollo de infraestructura. Identificamos cinco categorías de movimiento específico
por localidad exhibidas por los elefantes, definidas en términos generales como intensidad de uso alta, media y
baja. También identificamos dos tipos de corredores de conectividad asociados con movimientos rápidos y lentos.
Los corredores de intensidad de uso alta y movimiento lento estuvieron asociados con las características similares
de paisaje asociadas a las áreas productivas cercanas a cuerpos de agua, mientras que los corredores de intensidad
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2 Critical Habitat

baja y movimiento rápido estuvieron caracterizados por áreas de baja productividad alejadas de los cuerpos de
agua. Con la combinación de la información sobre la intensidad de uso, las propiedades de las vías de movimiento
y los aspectos estructurales del movimiento a lo largo del paisaje, nuestra estrategia proporciona una definición
explícita del papel funcional que tienen las áreas de movimiento en el paisaje, la cual denominamos paisaje de
movimiento (movescape). Esta información combinada y de alta resolución con respecto al uso espacial por la
fauna ofrece información mecánica que puede mejorar la planeación del paisaje.

Palabras Clave: concentración, conectividad, corredor de movimiento, movimiento animal, planeación del
paisaje, telemetría por radio GPS, teoría de gráficos, teoría de redes, uso del espacio
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Introduction

Land conversion driven by agriculture expansion, re-
source extraction, and related infrastructure develop-
ment is accelerating globally (Tilman et al. 2011) and is
recognized among the most prevalent drivers of wildlife
population decline and a key risk factor for species per-
sistence (Brook et al. 2008). Human-driven landscape
changes interfere with the movement and behavior of
animals and affect multiple processes at individual, pop-
ulation, and community levels that can have adverse ef-
fects on animal fitness and ecosystem functions (Allen &
Singh 2016). Preserving and maintaining areas critical to
wildlife populations is a primary step for the mitigation
of the increasing impacts of human footprint expansion
on natural systems. As such, application of effective ap-
proaches to identify locations key to wildlife is crucial to
conservation efforts.

Understanding the processes that govern movement
(Nathan et al. 2008) and how to protect this critical be-
havior has been the focus of increasing research, driven
largely by rapid development in tracking technology and
analytical approaches (Kays et al. 2015). These develop-
ments have led to a better understanding of the myriad
of movement-related patterns, including home-ranging
behavior (Fleming et al. 2018), resource selection (Av-
gar et al. 2016), patterns in intensity of use (Bracis
et al. 2018), movement syndromes (e.g., residency to mi-
gration continuum) (Bastille-Rousseau et al. 2017), and
movement modes or behavioral states (Gurarie et al.
2009; Edelhoff et al. 2016). These methods typically fo-
cus on a single attribute of movement behavior (e.g., in-

tensity of use or movement speed), which limits insight
into the multiple aspects of space use captured through
movement data (Wittemyer et al. 2019).

The spatial context of movements is fundamental to
interpreting differences in movement properties and to
elucidating drivers of movement patterns. However, spa-
tial context in movement ecology has primarily been
investigated in terms of patterns in utilization distribu-
tion, resource use, and resource selection. Inferences
from these approaches generally focus on population-
level global patterns in use, but additional inferences
can be gained by investigating variation in patterns of
use (Bastille-Rousseau et al. 2010; Benhamou & Riotte-
Lambert 2012), individual variation in behavior (Leclerc
et al. 2016), or how use is associated with different move-
ment modes (Roever et al. 2013). Determining the rela-
tionships between path properties or defined movement
states and their landscape context directly provides an-
other approach to determine ecological factors structur-
ing movement behavior (Graves et al. 2007). Critically,
the value of an area for animal movement extends be-
yond its importance as assessed via intensity of use or
the context of movement path properties (Wittemyer
et al. 2019). Some locations are particularly important
for animal behaviors or functions including movement
connectivity or other properties of animal space-use pat-
terns that are not easily diagnosed using conventional
approaches (Jacoby & Freeman 2016). For example, lo-
cations of critical importance for animals can represent
hubs (e.g., central foraging areas or repeatedly visited
sites) or bottlenecks in their movement network that can
be independent of the intensity to which they are being
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Figure 1. How the functional landscape of movement (i.e., movescape) can be evaluated based on animal
movement trajectory: (a) trajectory acquired using telemetry, (b) trajectory used to estimate properties related to
intensity of use, landscape structure of movements, or movement path properties (c) metrics of intensity of use
estimated by counting the number of locations in an area (i.e., weight), network metrics (degree and
betweenness) estimated by evaluating the connection among pixels (e.g. red pixels connected to purple pixels, and
metrics of movement path properties estimated using speed and directionality (all metrics derived only for pixels
with GPS points), and (d) machine-learning simplification of metrics in [a-c] into a synthetic representation
describing the functional role of a location for animal movement.

used. We refer to these additional characteristics of an
animal’s use of space as structural properties (Wittemyer
et al. 2019).

Combining information on intensity of use, move-
ment path properties, and structural aspects of loca-
tions across the broader movement network can offer

more general insight on the functional role of a loca-
tion as defined by animal movement behavior (Fig. 1).
A synthetic representation of these analytical products
allows the characterization of a functional landscape
of movement or movescape, which integrates the spa-
tial representation based on intensity of use, temporal
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representation based on movement trajectory proper-
ties, and broader spatial context that can be unveiled
using network theory (Bastille-Rousseau et al. 2018). Dif-
ferent types of movement can be segregated along these
axes (i.e., intensely used, centrally connected areas ac-
cessed with slow or fast movements). For example, a spa-
tially explicit definition of movements of high connective
value (as defined using a network approach) combined
with information on the intensity of use and movement
phases occurring at high connective locations can serve
to quantitatively demarcate corridors associated with fast
directional movement and limited residency time rela-
tive to corridors where animals move slowly with longer
residency times and, therefore, extend the range of an
individual as well as facilitate connectivity (i.e., slow
corridor) (Fig. 1). Combining these different streams of
movement properties within a single landscape opens
new avenues to understanding of movement ecology
and animal interactions with the environment. The
movescape can serve to define the functional impor-
tance of locations for animal movement across the land-
scape that could be directly integrated into conservation
actions.

To exemplify the potential of combining movement
path and structural properties with information related
to intensity of use, we integrated 5 metrics (Fig. 1) to
explore movement of a population of African elephants
(Loxodonta africana) inhabiting northern Kenya. We
applied graph theoretic approaches to the elephant
movement data (Bastille-Rousseau et al. 2018) to derive
a metric of intensity of use (weight) as well as metrics
related to structural properties (degree and between-
ness) to characterize locational importance for connec-
tivity. We also extracted movement path properties re-
garding average speed and directionality at these same
locations. We used machine learning to detect homo-
geneous movement types (clusters) within space (de-
fined within pixels) from these 5 streams of information
to define movescapes of elephants, including different
intensities of use (high-, medium-, and low-use areas),
location-specific velocity (slow and fast movements), and
importance to connectivity (high and low connectivity
values that underpin corridor definition). Of particular
interest, the combination of these metrics allowed defini-
tion of different types of corridors, which we simplified
to those associated with fast and directed movements
or slow and meandering movements (i.e., connectivity
vs. extended-use corridors [Bennett 1999]). Finally, we
evaluated whether the detected movement types were
mostly influenced by environmental variables (i.e., pro-
ductivity, water, and human presence) or social variables
(i.e., use by other elephants). Overall, our framework in-
tegrates properties related to intensity of use with func-
tional and structural movement patterns to define the
movescape.

Methods

Study Area

The Laikipia-Samburu ecosystem in northern Kenya (ap-
proximately 0.4°S to 2°N, 36.2°E to 38.3°E) is inhabited
by the country’s second largest elephant population. The
elephant population is of conservation interest, and the
study area is a designated site for the Convention on In-
ternational Trade in Endangered Species Monitoring of
Illegal Killing of Elephants program (Wittemyer et al.
2014). Land use in the ecosystem consists of commu-
nity conservancies, communal land, government man-
aged national reserves and forest reserves, and private
lands. The area has a variety of land-cover types, includ-
ing cool moist highland forests and semiarid savannah.
The system generally has 2 wet seasons and 2 dry seasons
annually.

Data Collection

We analyzed GPS data collected from 2001 to 2019 from
138 elephants (69 females and 69 males) as part of a long-
term research project. All animal handling procedures
were approved by Colorado State University (IACUC pro-
tocol 18-7741A). Most collars acquired locations on the
hour, but a minority of collars acquired locations at 30-
minute intervals or every 2 hours. Erroneous locations
were filtered by using a speed filter of 9 km/hour, and
all trajectories were resampled every 2 hours to accom-
modate the different schedules of collars. After resam-
pling, elephant tracking data sets from the 138 individu-
als averaged 11,794 locations (range 53–58,031), and the
total sample was 1,627,598 locations. Individual move-
ment networks were composed of 7,507 pixels (range
40–25,293) of 100 m2.

Estimation of Movement Metrics

Our analytical approach entailed several steps as illus-
trated in Fig. 1 and Supporting Information. We used
movement data to evaluate several movement metrics
(step 1, Fig. 1) and machine learning to assign a location
to a specific movement class (steps 2 and 3, Supporting
Information); compiled location-specific environmental
variables (step 4), and performed a regression evaluating
the impact of these variables on the probability of detect-
ing a specific movement class (step 5). Finally, we inte-
grated the functions developed in this analysis to the R
package moveNT (https://github.com/BastilleRousseau/
moveNT) (vignette provided in Supporting Information
to assist reader).

We evaluated the movement network of each tracked
individual (step 1, Supporting Information) with the ap-
proach presented in Bastille-Rousseau et al. (2018). This
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package calculates network metrics from a movement
path by laying a grid over the trajectory in which each
pixel of the grid that contains GPS locations represents a
network node. The trajectory is used to identify connec-
tions (edges) among the 100-m2 pixels (nodes), and con-
nections are tallied into an adjacency matrix. For each
pixel, we calculated the weight (number of locations
within a pixel), degree (number of other pixels a given
pixel is connected to), and betweenness (importance of
a pixel to access the rest of the network). We also ex-
tracted the average speed of movements within this pixel
(based on all movement steps initiated within a pixel)
and the mean cosine (dot product) of the turning angles
of steps within a pixel (Wall et al. 2013), an indication of
how directional movement is within a pixel.

Clustering of Movement Functions Within Pixels

Gaussian mixture models were used to cluster pixels
based on the 5 variables (weight, degree, betweenness,
speed, and dot product). Clustering was applied inde-
pendently to each individual data set (step 2, Supporting
Information) by defining the optimal number of clusters
in 1–8 clusters with the Bayesian information criterion
(BIC) (Fraley & Raftery 2002). We limited the number
of cluster to 8 because we expected a maximum of 8
functionally meaningful clusters (low use, medium use,
high use, and movement corridor, each associated with a
meandering or directed movement phase reflecting high
speed and high dot product).

To estimate general population-level clusters in the
movement properties, we applied a second clustering ap-
proach to the center (mean) value of each cluster derived
for individuals (step 3, Supporting Information). At the
population level, we tested for 2–8 clusters with BIC to
select the optimal numbers. Two-step clustering ensured
that equal weight was given to each individual in the clus-
tering procedure (Supporting Information). These popu-
lation clusters were associated qualitatively with differ-
ent potential types of movement (fast corridor, slow cor-
ridor and high-, medium-, and low-use areas) based on
the center of each cluster. Population-level maps illustrat-
ing movement categories over the landscape were cre-
ated by overlaying individual-level classification, meaning
that a pixel could be associated with different categories.
We also created additional maps of movement corridors
based on linear interpolation of the movement steps in
Supporting Information. The R package mclust (Scrucca
et al. 2016) was used for this part of the analysis.

Environmental Variables

A series of spatial covariates were compiled to relate
to elephant landscape of movement (step 4, Support-
ing Information). These covariates included a 30-m Land-
sat land-cover classification reclassified into 4 land-cover

types (forest, wooded savannah, open savannah, and
other types) and land ownership (national and forest
reserves, community conservancies, private conservan-
cies, private lands, and communal lands). Euclidean dis-
tance to roads and water were also used where water
sources where characterized as permanent and seasonal
sources. Human footprint in the area was characterized
by manually digitizing human features across the area
based on imagery available through Google Earth. We
used this information to generate a layer of distance to vil-
lages and towns and a layer of spatial density of dwellings
(bomas), which were extracted across a 500-m radius
moving window. Elevation data at a 30-m resolution were
obtained from the Shuttle Radar Topography Mission
and were used to generate slope and terrain rugged-
ness index (TRI) layers. Normalized difference vegeta-
tion index (NDVI) was extracted from the Moderate Res-
olution Imaging Spectroradiometer (MODIS) vegetation
product (Justice et al. 1998). The MODIS vegetation in-
dices, which span the years 2000–2018, are provided at
250-m resolution every 16 days. We extracted average
NDVI and mean interannual variability as the SD in NDVI
for each pixel as a measure of vegetation predictability
(Bastille-Rousseau et al. 2017).

Statistical Analyses

We extracted all environmental covariates for each pixel
of an individual movement network grid. For each of
these pixels, we extracted how other individuals were
using the areas as defined by the assigned movement
types. We used mixed-effects logistic regression with in-
dividual elephants as a random factor and with various
contrasts (Table 1) to evaluate the impacts of environ-
mental and social (other elephants’ space use) variables
on the different types of use (step 5, Supporting Informa-
tion). For these regressions, we kept only pixels that had
>95% classification certainties for the use type (assuming
pixels with uncertainty in the use category were not im-
portant). Given some pixels were used by >1 individual,
the same pixels could be present more than once in the
same regression (either as the variable coded as one or
zero). Due to the large data set and more conservative
outputs of BIC (Aho et al. 2014), we performed model
selection with BIC in a 3-step process, first choosing the
more parsimonious subset of environmental variables,
then the subset of social variables (female and male use),
then testing whether environmental, social, or both sets
of variables provided a better fit. Each model included
a spatial autocovariate to account for spatial autocorrela-
tion (i.e., autologistic model) based on an inverse weight-
ing scheme, a neighborhood radius of 5000 pixels (i.e.,
500 km), and a symmetric neighborhood matrix (Bardos
et al. 2015). Models were also tested for multicollinear-
ity with the variance inflation factor (no variables had
a factor value >10) (Dormann et al. 2012). Given
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Table 1. Contrasts used as the response variables in logistic regressions testing the impacts of covariates on animal movement types.

Variable coded as 1
∗

Variables coded as 0
∗

Variables excludeda Results in

High use medium use, low use corridor Table 3
Corridor (fast) high use, medium use, low use corridor (slow) Table 3
Corridor (slow) high use, medium use, low use corridor (fast) Table 3
Medium use low use high use, corridor Supporting Information
Corridor (fast) corridor (slow) high use, medium use, low use Supporting Information
Low use (fast) low use (slow) high use, medium use, corridor Supporting Information

∗Variables included (and their coding in the logistic regression).

Table 2. Summary of the unsupervised classification applied to various metrics of movement of 138 African elephants inhabiting northern Kenya.

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 Cluster 8

Weight
a −0.337 0.625 1.604 1.203 2.915 0.394 −0.383 −0.380

Degree
a −0.357 0.718 1.580 1.393 2.603 0.510 −0.411 −0.412

Betweenness
a

1.602 1.353 0.817 0.009 0.550 0.019 −0.112 −0.266
Speed

a
0.531 0.144 0.374 −0.364 −0.548 −0.223 0.765 −0.230

Dot product
a

0.006 0.094 −0.337 −0.059 −0.143 −0.021 0.605 −0.258
Proportion of pixels

b
0.090 0.068 0.007 0.047 0.049 0.122 0.140 0.478

Proportion of individuals
c

0.804 0.616 0.196 0.572 0.993 0.551 0.725 0.775
Movement type fast corridor slow

corridor
high-use

(fast)
high-use highest-use medium-use low-use

(fast)
low-use

(slow)
aAverage (center) of the cluster, where positive values indicate a higher mean and negative values indicate lower mean of that movement
property in the designated cluster than in other clusters.
bSpatial proportion of each cluster based on the percentage of an individual’s range in pixels assigned to a given cluster. See also Supporting
Information for individual variation in the proportion of pixels.
cProportion of studied individuals in the cluster.

documented differences in movement behavior of males
and females (Bastille-Rousseau & Wittemyer 2019), anal-
yses were performed separately for males and females.
We used the area under the curve (AUC) of the receiver
operating characteristic curve to evaluate performance
of the logistic regression. We used the R packages AIC-
cmodavg (Mazerolle 2017), MuMIn (Barton 2018), and
spdep (Bivand & Piras 2015) for this part of the analy-
sis. We conducted an additional analysis to evaluate the
association in movement types among individuals (see
Supporting Information).

Results

Individual and Population-Level Clustering

Eight clusters were identified at the population level
based on BIC (Table 2), but most individual elephants
(77.5% of individuals) were assigned to 5–7 of these
clusters, and the remaining individuals were assigned to
≤4 clusters. No elephants displayed each cluster or only
1 cluster. Clusters 5 (high use) and 1 (fast corridors) were
assigned to the highest proportion of individuals, but
represented limited areas on the landscape (few pixels).
Population-level clusters were characterized by different
movement types. Clusters 1 and 2 were associated with
areas important for connectivity (based on high between-
ness values), but the clusters were differentiated with

respect to time spent in them (weight) and, relatedly, the
speed in which elephants traveled within these pixels.
These 2 clusters were descriptively assigned as fast and
slow movement corridors. Although relatively common
among individuals (assigned to 80% and 62% of individ-
uals respectively [Table 2]), such pixels were relatively
rare on the landscape, representing respectively 9% and
7% of the pixels in a given individual’s network. Cluster
3, 4, and 5 were associated with high-use areas as indi-
cated by their high weight and degree values. Cluster 5
was characterized by very high use and found in virtually
all individuals (99%), despite being assigned to only 5%
of pixels in an individual’s network (Table 2). Cluster 6
represented medium-use areas, whereas clusters 7 and 8
represented low-use areas that differed in regard to the
speed and directionality within a pixel. These low-use
clusters were the most common on the landscape; 62%
of pixels in individual networks were assigned to these
clusters (Table 2 & Supporting Information). However,
when combining individual networks into a population-
level representation and giving priority to high-use
areas when individuals were grouped together (Fig. 2
& Supporting Information), the spatial importance of
high-use areas increased. Likewise, many high-use areas
were also fast, slow, or both fast and slow movement
corridors, especially around the national reserves, where
a majority of elephants are tracked leading to high range
overlap (Fig. 2). These patterns were also reflected in
the spatial-association analysis (Supporting Information).
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Figure 2. Intensity of use and corridor categorizations of movement properties of 138 elephants in Northern
Kenya: (a, b) overall study area with a discretized pixel resolution of 1 km and (c,d) movement based on a pixel
size of 100 m centered on the intensively sampled national reserves (bold outlining, national reserves; thin
outlining, surrounding community conservancies). When multiple individuals overlap within a pixel, the higher
use category is displayed. When the 2 types of corridors are assigned to the same location by different individuals,
the both-corridors category is displayed. Additional maps of movement corridors are in Supporting Information.
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Figure 3. Subset of coefficients and confidence intervals of mixed-effects logistic regressions evaluating the effects of
4 variables (for both sexes: high-use vs. medium- and low-use areas; fast corridor vs. slow corridor; fast corridor vs.
high-, medium-, and low-use areas; and slow corridor vs. high-, medium-, and low-use areas) related to productivity
and water access on the probability of observing different animal movement types (NDVI, normalized difference
vegetation index; CV, coefficient of variation). Complete models are in Table 3 and Supporting Information.

Environmental and Social Influences on Movement Functions

Model selection indicated that both environmental and
social variables explained variation among individual
movescapes (Supporting Information). Overall, top mod-
els of male movescapes were less complex and had sim-
ilar or slightly higher predictive performance as mea-
sured by AUC values than the top models for females
(Table 3 & Supporting Information). Likewise, roles of
many variables were different between sexes (Fig. 3,
Table 3, & Supporting Information) As predicted, veg-
etation productivity and predictability where the dom-
inant variables related to high-use areas for both males
and females, followed by proximity to permanent wa-
ter (Fig. 3). Human footprint (villages and bomas [tradi-
tional cattle corrals]) did not play a strong role in how
elephants used space. For females land designation also
played a pivotal role in determining high-use areas; pri-

vate lands and conservancies were preferred relative to
communal areas without conservation status. Fast corri-
dors tended to occur in areas with relatively low and less
predictable vegetation productivity (Table 3 & Fig. 3),
whereas slow corridors were in places of relatively high
and more predictable productivity. Relative to slow cor-
ridors, fast corridors also appeared to be farther away
from water (Supporting Information). For females cor-
ridors tended to occur more commonly on community
lands, and slow relative to fast corridors differed mostly
in response to land designation. Slow corridors occurred
in private lands, whereas fast corridors were mostly
found in community conservancies and communal areas
(Table 3). In terms of variables related to conspecific
use, high use was positively influenced by high use by
conspecifics. Fast corridors for female were less likely to
occur in areas of high use by other elephants (Table 3).
Results of contrasts between medium-use and low-use
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areas, fast versus slow corridors, and the 2 types of low-
use areas are in Supporting Information and confirm
trends mentioned above.

Discussion

By combining properties related to intensity of use,
structural aspects of animal movement networks, and
properties of the movement paths, our framework
characterized the functional role of a location for animal
movement (i.e., the movescape), the characterization
of which can facilitate landscape planning efforts. High,
medium, and low intensity of use areas and connectivity
corridors associated with fast and slow movements
served to identify high-value locations for protection
from development or direct connectivity conservation
efforts. Such characterization was possible only through
the combination of multiple metrics, providing a substan-
tive shift in conservation planning outputs from tracking
data that have typically been based on single-movement
metrics. The presence and frequency of each type of
movement category varied across elephants, highlighting
the differentiation in movement strategies in the study
population (Bastille-Rousseau & Wittemyer 2019), a trait
that may be particularly amplified in elephant behavior.
Overall, our framework offers valuable information for
conservation planning through the explicit definition of
movement types across locations (Fig. 2 & Supporting
Information). Our method is straightforward to apply
to systems with rich tracking data and allows definition
of the movescape that can serve as a foundation to
investigation of spatiotemporal behavior.

Improving Conservation Planning with Movement Data

Although delineating corridors has been a key focus of
wildlife movement studies for decades, the increasing
number and size of tracking data sets is allowing novel
approaches to this critical objective. By explicitly quanti-
fying a location’s connectivity value in conjunction with
its use, our approach characterizes movement corridors
based on how these corridors emerge. These corridors
are functionally important for dispersal movements in a
low-quality matrix (e.g., fast corridor) or can facilitate
connectivity while enhancing habitat for other functions
(e.g., slow corridors). We found that relative to slow
movement corridors (Supporting Information), these fast
movement corridors were actually associated with un-
favorable landscape features for elephants (i.e., those
avoided [Bastille-Rousseau et al. 2020]). Protecting land-
scape properties associated with slow corridor move-
ment types (e.g., productive areas near water and away
from humans), which were similar to properties associ-
ated with more highly used areas will be more valuable
for elephants. Our results also revealed that these high-

use and slow-corridor areas cover a small fraction of the
landscape, allowing tractable targeting of key areas for
this population. Taken together, these findings illustrate
how our approach can directly benefit elephant conser-
vation.

Given the spatial specificity common to directed ele-
phant movements (Polansky et al. 2015), it is unclear
whether fast corridors are generally associated with un-
favorable landscape characteristics as in other animal sys-
tems. Regardless, these results challenge the assumption
behind popular approaches to delineate corridors that
frequently focus on fast and directional movement as a
starting point to build resistance surfaces (Graves et al.
2007; LaPoint et al. 2013; Zeller et al. 2017). Although
discussions regarding the role of corridors to augment
core habitat have been a part of conservation planning
efforts for years (Bennett 1999; Hanski 1999; Pascual-
Hortal & Saura 2006), we believe that our approach,
by combining multiple movement properties, provides
a valuable new tactic for explicitly defining corridor lo-
cations for connectivity, as well as their relative value in
terms of habitat augmentation.

More broadly, understanding animal movement and
the means by which individuals use specific locations on
a landscape is critical to conservation planning efforts
that require spatially explicit information, such as cre-
ating protected areas and mitigating anthropogenic de-
velopment. By identifying movement properties across
a landscape, including the explicit definition of corri-
dors and the level of use in them, our approach pro-
vides high-resolution information of the functional role
a location plays for animal movement. Identifying critical
areas is typically addressed through derivation of popu-
lation mean behavior, but our approach can also handle
more complex space-use strategies within a population
and among individuals. For example, we found elephants
used the same area differently (e.g., as both fast and slow
movement corridors [Fig. 2]). Although this may render
landscape planning decision more complicated, it allows
managers to understand the fraction of the population
affected by specific land-alteration scenarios and to opti-
mize decisions to enhance protection for specific sectors
in a population (e.g., females over males).

Toward the Animal Movescape

Although we used 5 movement metrics to capture prop-
erties related to 3 aspects of movement (intensity of
use, structural, and path properties [Fig. 1]), we rec-
ognize there are other ways of capturing characteris-
tics to define the movescape that may reflect other im-
portant aspects of movement behavior (e.g., expected
displacement [Avgar et al. 2013] or velocity autocorre-
lation). However, we assert that spatially explicit char-
acterization of movement should be aggregates of the
3 classes of movement properties employed here given

Conservation Biology
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that they represent fundamental characterizations of the
movement process (Wittemyer et al. 2019). Our frame-
work of integrating these 3 classes directly builds on tra-
ditional approaches to derive movement metrics from
GPS data. This includes the most commonly used met-
ric of use intensity, broader landscape context through
structural metrics, as well as path properties used in
the assignment of movement modes related to speed
and directionality (Langrock et al. 2012; Edelhoff et al.
2016). Although path properties typically focus on tem-
poral aspects of the trajectory to define behavioral
states interpreted as resting, foraging, and displacement,
here we projected the path properties used to char-
acterize modes spatially. In doing so, we were able to
describe animal movement types that not only incor-
porate discrete parts of the path trajectory, but also
considered how these steps relate to the local inten-
sity of use and the structural importance of a loca-
tion. A key difference between our approach and the
temporal segmentation of modes is that inferences are
not made at the step level, but rather on a discrete
unit of the landscape (i.e., a pixel). We assert that
these functional movement types are not mere expan-
sions of temporal modes but provide a different way
to quantify variation in animal movement over time
and space (Wittemyer et al., 2019). In particular, in-
corporating structural properties related to connectivity
makes these movement types different from the typical
encamped or exploratory (Turchin 1998) or selection or-
avoided dichotomies.

Aggregation of multiple movement metrics is fun-
damental to defining the movescape, but our use of
clustering with mixture models could be replaced by
other approaches. Multivariate mixed models could be
used to integrate multiple metrics and to study co-
variance among the metrics (Dingemanse & Dochter-
mann 2013), but such models would be computation-
ally demanding. Clustering the metrics reduces the anal-
yses to a few categories, therefore facilitating interpreta-
tion and spatial representation. The advantage of Gaus-
sian mixture models is that uncertainties of the classi-
fication are tractable and can be integrated into sub-
sequent analyses. Alternatively, a supervised classifica-
tion could be used in lieu of the unsupervised classifi-
cation we employed. A supervised classification would
facilitate interpretability of the classification, which
can be difficult with an unsupervised approach. How-
ever, a supervised classification would require training
data that may be hard to acquire, likely necessitating
paired observational data from sensors (e.g., camera
traps, video, or acoustic monitoring) or direct behav-
ioral monitoring. Finally, it remains that our 2-step clus-
tering, although providing advantages in terms of giv-
ing equal weight to all individuals, is convoluted (Sup-
porting Information). A specifically designed algorithm
that performs hierarchical (individual and population-

level) clustering would prove useful in simplifying
this step.

In its essence, an animal’s movescape should be
largely driven by environmental covariates and variables
associated with biotic interactions, similar to how the
landscape of fear (Laundré et al. 2001) is a function
of interactions between environmental covariates and
predator behaviors. Disentangling spatial movement on
the landscape and the contribution of environmental and
biotic variables on the movescape provide a deeper un-
derstanding of the factors structuring animal movement
in space. Although we focused on empirical representa-
tion of the movescape, our approach is also amenable to
covariate based predictive outputs, for example, by cre-
ating maps predicting the probability of observing a spe-
cific cluster. Such outputs could be used to enhance cur-
rently employed approaches. For instance, the probabil-
ity of movement corridors could be used to parameterize
popular connectivity approaches (e.g., circuitscape anal-
yses). This may provide better modeling outputs given
our definition of movement corridors is based on multi-
ple movement properties related to actual connectivity.

Mitigating the increasing threats to natural landscapes
requires a mechanistic understanding of animal behav-
ior and ecology (Wittemyer et al., 2019). A key step in
this process is determining the mechanisms driving an-
imal movement behavior and applying this knowledge
to determine wildlife spatial requirements critical to eco-
logically sensitive land-use planning within a species
range. Combining multiple movement properties into a
movescape allows a finer mechanistic understanding of
the importance of an area for an animal. By characteriz-
ing the movescape for species facing threats from habitat
loss and change, conservation efforts can focus on key
locations, thereby optimizing investment.

Acknowledgements

Elephant movement data were collected and procured
by the Save the Elephants Tracking Animals for Conserva-
tion Program. Collection and compilation of the data we
analyzed were a group effort of many people, including
I. Douglas-Hamilton, J. Wall, B. Lesowapir, B. Loloju, N.
Mwangi, D. Daballen, B. Okita, F. Ihwagi, C. Leadismo,
D. Kimanzi, and W. Lelukumani. G.B.R. was supported
by Save the Elephants, The Nature Conservancy, and the
Natural Sciences and Engineering Research Council of
Canada. We thank T. Avgar and 3 anonymous review-
ers for helpful comments on a previous draft of this
manuscript.

Supporting Information

Supplementary tables and figures (Appendix S1), an
additional analysis of association among individuals

Conservation Biology
Volume 0, No. 0, 2020



Bastille-Rousseau & Wittemyer 13

(Appendix S2), and a vignette presenting the analytical
workflow and introducing the main R functions (Ap-
pendix S3) are available online. The authors are solely
responsible for the content and functionality of these ma-
terials

Literature Cited

Aho K, Derryberry D, Peterson T. 2014. Model selection for ecologists:
the worldview of AIC and BIC. Ecology 95:631–636.

Allen AM, Singh NJ. 2016. Linking movement ecology with wildlife
management and conservation. Frontiers in Ecology and Evolution
3:1–13.

Avgar T, Mosser A, Brown GS, Fryxell JM. 2013. Environmental and
individual drivers of animal movement patterns across a wide geo-
graphical gradient. Journal of Animal Ecology 82:96–106.

Avgar T, Potts JR, Lewis MA, Boyce MS. 2016. Integrated step selection
analysis: bridging the gap between resource selection and animal
movement. Methods in Ecology and Evolution 7:619–630.

Bardos DC, Guillera-Arroita G, Wintle BA. 2015. Valid auto-models for
spatially autocorrelated occupancy and abundance data. Methods
in Ecology and Evolution 6:1137–1149.

Barton K. 2018. MuMIn: multi-model inference. Available from https:
//cran.r-project.org/package=MuMIn (accessed April 2018).

Bastille-Rousseau G, Douglas-Hamilton I, Blake S, Northrup JMJM, Wit-
temyer G. 2018. Applying network theory to animal movements to
identify properties of landscape space use. Ecological Applications
28 https://doi.org/10.1002/eap.1697.

Bastille-Rousseau G, Fortin D, Dussault C. 2010. Inference from habitat-
selection analysis depends on foraging strategies. Journal of Animal
Ecology 79:1157–1163.

Bastille-Rousseau G, Gibbs JP, Yackulic CB, Frair JL, Cabrera F, Rousseau
LP, Wikelski M, Kümmeth F, Blake S. 2017. Animal movement in the
absence of predation: environmental drivers of movement strate-
gies in a partial migration system. Oikos 126:1004–1019.

Bastille-Rousseau G, Wall J, Douglas-Hamilton I, Lesowapir B, Loloju B,
Mwangi N, Wittemyer G. 2020. Landscape-scale habitat responses
of African elephants shows strong response to foraging opportuni-
ties in a human dominated ecosystem. Ecography 43:149–160.

Bastille-Rousseau G, Wittemyer G. 2019. Leveraging multidimensional
heterogeneity in resource selection to define movement tactics of
animals. Ecology Letters 22:1417–1427.

Benhamou S, Riotte-Lambert L. 2012. Beyond the utilization distribu-
tion: identifying home range areas that are intensively exploited or
repeatedly visited. Ecological Modelling 227:112–116.

Bennett AF. 1999. Linkages in the landscape: the role of corridors and
connectivity in wildlife conservation. International Union for Con-
servation of Nature, Gland, Switzerland.

Bivand R, Piras G. 2015. Comparing implementations of estimation
methods for spatial econometrics. Journal of Statistical Software
63:1–36.

Bracis C, Bildstein KL, Mueller T. 2018. Revisitation analysis uncovers
spatio-temporal patterns in animal movement data. Ecography 41:
1801–1811.

Brook BW, Sodhi NS, Bradshaw CJ a. 2008. Synergies among extinction
drivers under global change. Trends in Ecology & Evolution 23:453–
460.

Dingemanse NJ, Dochtermann NA. 2013. Quantifying individual vari-
ation in behaviour: mixed-effect modelling approaches. Journal of
Animal Ecology 82:39–54.

Dormann CF et al. 2012. Collinearity: a review of methods to deal with
it and a simulation study evaluating their performance. Ecography
36:27–46.

Edelhoff H, Signer J, Balkenhol N. 2016. Path segmentation for begin-
ners: An overview of current methods for detecting changes in ani-
mal movement patterns. Movement Ecology 4:1–21.

Fleming CH et al. 2018. Correcting for missing and irregular data in
home-range estimation. Ecological Applications 28:1003–1010.

Fraley C, Raftery AE. 2002. Model-Based Clustering, Discriminant Anal-
ysis, and Density Estimation. Journal of the American Statistical As-
sociation 97:611–631.

Graves TA, Farley S, Goldstein MI, Servheen C. 2007. Identification
of functional corridors with movement characteristics of brown
bears on the Kenai Peninsula, Alaska. Landscape Ecology 22:765–
772.

Gurarie E, Andrews RD, Laidre KL. 2009. A novel method for identify-
ing behavioural changes in animal movement data. Ecology Letters
12:395–408.

Hanski I. 1999. Metapopulation ecology. Oxford University Press, Ox-
ford, United Kingdom.

Jacoby DMP, Freeman R. 2016. Emerging Network-based tools in move-
ment ecology. Trends in Ecology & Evolution 31:301–314.

Justice CO, et al. 1998. The moderate resolution imaging spectrora-
diometer (MODIS): Land remote sensing for global change research.
IEEE Transactions on Geoscience and Remote Sensing 36:1228–
1249.

Kays R, Crofoot MC, Jetz W, Wikelski M. 2015. Terrestrial animal track-
ing as an eye on life and planet. Science 348:1222–1232.

Langrock R, King R, Matthiopoulos J, Thomas L, Fortin D, Morales
JM. 2012. Flexible and practical modeling of animal telemetry
data: hidden Markov models and extensions. Ecology 93:2336–
2342.

LaPoint S, Gallery P, Wikelski M, Kays R. 2013. Animal behavior,
cost-based corridor models, and real corridors. Landscape Ecology
28:1615–1630.

Laundré JW, Hernandez L, Altendorf KB. 2001. Wolves, elk, and bison:
reestablishing the “landscape of fear” in Yellowstone National Park,
USA. Canadian Journal of Zoology 79:1401–1409.

Leclerc M, Vander Wal E, Zedrosser A, Swenson JE, Kindberg J, Pelletier
F. 2016. Quantifying consistent individual differences in habitat se-
lection. Oecologia 180:697–705.

Mazerolle MJ. 2017. AICcmodavg: model selection and multimodel in-
ference based on (Q)AIC(c). Available from https://cran.r-project.
org/package=AICcmodavg (accessed April 2018.).

Nathan R, Getz WM, Revilla E, Holyoak M, Kadmon R, Saltz D, Smouse
PE. 2008. A movement ecology paradigm for unifying organismal
movement research. Proceedings of the National Academy of Sci-
ences of the United States of America 105:19052–19059.

Pascual-Hortal L, Saura S. 2006. Comparison and development of new
graph-based landscape connectivity indices: towards the prioriza-
tion of habitat patches and corridors for conservation. Landscape
Ecology 21:959–967.

Polansky L, Kilian W, Wittemyer G. 2015. Elucidating the significance
of spatial memory on movement decisions by African savannah ele-
phants using state–space models. Proceedings of the Royal Society
B: Biological Sciences. 282:1-7.

Roever CL, Beyer HL, Chase MJ, van Aarde RJ. 2013. The pitfalls of ig-
noring behaviour when quantifying habitat selection. Diversity and
Distributions 20:322–333.

Scrucca L, Fop M, Murphy TB, Raftery AE. 2016. mclust 5: clustering,
classification and density estimation using gaussian finite mixture
models. The R journal 8:289–317.

Tilman D, Balzer C, Hill J, Befort BL. 2011. Global food demand and
the sustainable intensification of agriculture. Proceedings of the Na-
tional Academy of Sciences. 108:20260–20264.

Turchin P. 1998. Quantitative analysis of movement:measuring and
modeling population redistribution in animals and plants. Beresta
Books, https://berestabooks.com/.

Conservation Biology
Volume 0, No. 0, 2020

https://cran.r-project.org/package=MuMIn
https://cran.r-project.org/package=MuMIn
https://doi.org/10.1002/eap.1697
https://cran.r-project.org/package=AICcmodavg
https://cran.r-project.org/package=AICcmodavg
https://berestabooks.com/


14 Critical Habitat

Wall J, Wittemyer G, Klinkenberg B, LeMay V, Douglas-Hamilton
I. 2013. Characterizing properties and drivers of long distance
movements by elephants (Loxodonta africana) in the Gourma,
Mali. Biological Conservation 157:60–68.

Wittemyer G, Northrup JM, Bastille-Rousseau G. 2019. Behavioral val-
uation of landscapes using movement data. Philosophical Transac-
tions of the Royal Society B374:1-12.

Wittemyer G, Northrup JM, Blanc J, Douglas-Hamilton I, Omondi P,
Burnham KP. 2014. Illegal killing for ivory drives global decline in
African elephants. Proceedings of the National Academy of Sciences
111:13117–13121.

Zeller KA, McGarigal K, Cushman SA, Beier P, Vickers TW, Boyce WM.
2017. Sensitivity of resource selection and connectivity models to
landscape definition. Landscape Ecology 32:835–855.

Conservation Biology
Volume 0, No. 0, 2020


