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Exploring seasonal variation in the faecal glucocorticoid 
concentrations of African elephants (Loxodonta africana) living 
in a drought-prone, anthropogenic landscape 
Georgia TroupA,* , Robert HeinsohnA, Lucy E. KingB,C and Katie L. EdwardsD,E

ABSTRACT 

Context. The wide-ranging movement of African elephants (Loxodonta africana) is largely driven 
by the spatio-temporal distribution of water and forage, and often leads to their travelling outside 
of formally protected areas. With an increase in drier periods predicted across Africa due to 
climate change, it is critically important to understand how elephants physiologically respond to 
alterations in the availability and distribution of resources. Aims. We assessed variation in the 
adrenal activity of elephants living in Kenya’s Tsavo East National Park between wet and dry 
seasons, as well as among individuals found in Tsavo East National Park and privately protected 
Rukinga Wildlife Sanctuary (part of the Kasigau REDD+ wildlife corridor) in the dry season, when 
the area experiences an influx of elephants in search of alternative resources. Methods. We 
opportunistically collected fresh elephant faecal samples across the two seasons and locations for 
analysis of faecal glucocorticoid metabolite (fGCM, a proxy for stress) and nitrogen (Nf, an 
indirect measure of diet quality) concentrations. The Normalised Difference Vegetation Index 
(NDVI) was employed as an additional indicator of habitat quality. Key results. In Tsavo East 
N.P. Nf and NDVI were both significantly lower during the dry season, indicating poorer habitat 
quality compared with the wet season. Although elephant fGCM concentrations tended to be 
higher in the dry season than the wet, the differences were not significant. There was no 
difference between elephant fGCMs measured in Tsavo East N.P. and Rukinga W.S. during the 
dry season, nor in habitat quality between the two locations. Conclusions. Elephants living in 
Tsavo may be physiologically unaffected by (or adapt to) typical seasonal changes in habitat quality 
that could lead to nutritional stress; however, whether this is the case during extended periods of 
severe drought requires further investigation. Rukinga W.S. provides a safe haven of sufficient 
habitat quality for elephants searching for alternative resources during this period. Implications. 
Extended dry periods are likely to become increasingly common in semiarid savannahs, and 
implications for wildlife must be closely monitored. Privately protected land outside formally 
protected areas plays an important role in conservation efforts, which should be considered 
when making land management plans.  

Keywords: African elephants, anthropogenic, conservation, endocrine analysis, forage quality, 
glucocorticoids, habitat, herbivore nutrition, seasonal, stress. 

Introduction 

With the rising occurrence of extreme weather such as droughts (Dai 2013; Cook et al. 
2014; Masih et al. 2014), it is increasingly important to understand how the spatio- 
temporal distribution of resources affects the physiological stress response of wildlife. 
Herbivore nutrition is largely dependent on forage quality, which along with growth, is 
positively associated with the amount of rainfall (Marshal et al. 2005). Elevated stress 
levels have been observed in a number of wildlife species in response to declining forage 
quality during dry periods, including koalas (Phascolarctos cinereus) (Davies et al. 2014), 
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spider monkeys (Ateles geoffroyi yucatanensis) (Rangel- 
Negrín et al. 2009) and Greater rhea (Rhea americana) 
(Lèche et al. 2014). If individuals are unable to respond 
appropriately, repeated exposure to stressful stimuli can 
lead to chronic levels of stress, which may have major 
implications for reproductive function, growth and immu
nity (Wingfield and Sapolsky 2003; Romero 2004;  
Rasmussen et al. 2008; Koren et al. 2012). 

The African elephant (Loxodonta africana) is a wide- 
ranging herbivore whose movement is largely driven by 
the need to find water and forage (Birkett et al. 2012;  
Wall et al. 2013; Tshipa et al. 2017). These mega- 
herbivores require adequate nutrition for growth, reproduc
tion, energy metabolism and immunity (McCullagh 1969;  
Obanda et al. 2011; Ishiguro et al. 2018). Meeting these 
nutritional requirements becomes more challenging during 
the dry season, when the quality of forage often declines 
(Codron et al. 2007; Kohi et al. 2011; Kos et al. 2012). 
Accordingly, the body condition scores of African elephants 
have been reported to be lower in the dry than in the wet 
season (Foley et al. 2001), and Asian elephants (Elephas 
maximus) with low body condition scores are observed 
more frequently in drier periods (Pokharel et al. 2017). 
Dry seasons of poor forage quality may ultimately result in 
elephants becoming nutritionally stressed. 

Glucocorticoids form the basis of the neuroendocrine 
stress response in animals (Keay et al. 2006), thus faecal 
glucocorticoid metabolites (fGCMs) are commonly used as a 
proxy for physiological stress. Although primarily adaptive, 
allowing an individual to respond to a potential stressor, 
elevated fGCM concentrations may disrupt the reproductive 
tactics of male elephants, through suppressing the occur
rence of musth signals (Rasmussen et al. 2008). In addition, 
female elephants born during months when their mother 
exhibits increased stress concentrations experience faster 
reproductive senescence and reduced lifetime reproductive 
success (Mumby et al. 2015). Despite African elephant 
fGCMs being negatively correlated with habitat quality 
(Oduor et al. 2020), and Asian elephants with the lowest 
body condition scores displaying the highest fGCM concen
trations (Pokharel et al. 2017), previous investigation has 
produced mixed results regarding whether elephants exhibit 
seasonal variation in hormone levels (Foley et al. 2001;  
Viljoen et al. 2008; Woolley et al. 2009). Such inconsisten
cies are to be expected, as different ecosystems vary in local 
environmental conditions, which will inevitably influence 
the extent to which elephants are impacted. 

During dry periods, elephants face a key trade-off 
between resting to save energy and walking in search of 
forage and water (Mramba et al. 2019). Approximately 
70% of African elephant range lies outside of formally 
protected areas (Blanc et al. 2007), thus the search for 
permanent water and adequate forage during the dry season 
frequently results in elephants having to navigate unprotected 
areas where human disturbance is high (Cook et al. 2015;  

Evans et al. 2020). This can often lead to human–elephant 
conflict, particularly in the form of crop-raiding, which pres
ents a risk to their survival (Obanda et al. 2008; Mijele et al. 
2013). Land outside formally protected areas is therefore 
critically important for the conservation of elephants living 
in anthropogenic landscapes (Ahlering et al. 2013; Goswami 
et al. 2014; Ihwagi et al. 2015), and includes areas that 
offer informal protection for wildlife such as community- 
based conservancies and wildlife sanctuaries managed by 
private conservation bodies, as well as wildlife corridors 
that facilitate the safe passage of elephants between these 
areas (Songhurst et al. 2016; Adams et al. 2017; Talukdar 
et al. 2020). 

In order to be suitable for use, these areas of land must 
mitigate any potential elevation in the stress response of 
elephants as a result of moving through areas of increased 
human activities. Several previous studies have found ele
phants to exhibit heightened stress levels in response to 
various forms of anthropogenic disturbance (Ahlering 
et al. 2011; Tingvold et al. 2013; Hunninck et al. 2018;  
Szott et al. 2020), but this is not the case in all contexts 
(Munshi-South et al. 2008; Ahlering et al. 2013; Pokharel 
et al. 2019). Land outside formally protected areas should 
also provide elephants with habitat of sufficient quality to 
meet their nutritional requirements throughout the year. 

We explored seasonal variation in the faecal gluco
corticoid response (as a proxy for physiological stress) of 
African elephants living in Kenya’s Tsavo ecosystem, a 
drought-prone, anthropogenic landscape home to the coun
try’s largest population of elephants (Ngene et al. 2017). 
Habitat quality was additionally assessed through analysis 
of nitrogen (N) in faeces (total N of faeces, Nf) and the 
Normalised Difference Vegetation Index (NDVI). Nf is 
employed as an indirect measure of diet quality in herbi
vores (Leslie et al. 2008; Gil-Jiménez et al. 2015) because 
nitrogen provides an estimate of protein, which is limiting in 
herbivores (White 1993). NDVI is a widely used indicator of 
vegetation greenness (Pettorelli et al. 2005). 

Tsavo East and Tsavo West National Parks are separated 
by the Taita Taveta County, which is primarily comprised of 
small-scale farming communities and privately owned 
ranches, of which several are managed for conservation 
purposes. This includes the privately protected Rukinga 
Wildlife Sanctuary, part of the Kasigau REDD+ (an abbre
viation for ‘reducing emissions from deforestation and forest 
degradation’) Wildlife Corridor running centrally through 
Taita Taveta connecting Tsavo East and Tsavo West 
National Parks (Freund and Bird 2013). Rukinga had been 
grazed to dust by cattle before being converted to a wildlife 
sanctuary in 1997 by Wildlife Works (Wildlife Works 2021). 
During the dry season when water and forage become lim
ited inside the national parks, Rukinga W.S. sees an influx of 
elephants probably in search of the permanent water 
sources the sanctuary provides (McKnight 2004; Williams 
et al. 2018). Crop-raiding is frequently reported in nearby 
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farming communities (Kagwa 2011; Von Hagen 2018). We 
also investigated the habitat quality and fGCMs of elephants 
found in Rukinga W.S. during the dry season, to enable 
insight into the area’s suitability for use by elephants 
when travelling outside the national parks. Therefore, 
while other studies exploring fGCMs in elephants often 
focus on temporal or spatial variation, our research com
bined both in order to provide a more holistic picture of 
their physiological response when searching for resources. 

We hypothesised that: (1) elephants in Tsavo East N.P. 
would exhibit elevated levels of glucocorticoids during the 
dry season in compared with the wet season – this was based 
on the prediction that there would be a marked decline in 
habitat quality (as indicated by Nf and NDVI) from wet to 
dry seasons in Tsavo East N.P.; and (2) Elephants in Rukinga 
W.S. would exhibit increased glucocorticoid concentrations 
compared with elephants in Tsavo East N.P. during the same 
(dry) season, potentially resulting from Rukinga’s closer 
proximity to farming communities and other human- 
related disturbances. We predicted that with improved man
agement, the habitat quality of Rukinga W.S. would be 
comparable to that of Tsavo East N.P. during the same 
(dry) season, supporting Rukinga in providing sufficient 
forage resources for elephants when travelling outside the 
national park. Findings will ultimately contribute to our 
understanding of how seasonal variation in habitat quality 
may influence the stress response of elephants living in 
Tsavo, an already drought-prone ecosystem that is increas
ingly vulnerable to climate change. 

Materials and methods 

Study area 

The Tsavo ecosystem covers approximately 42 000 km2 in 
south-eastern Kenya (Lat: 2°57′59.99″S, Long: 38°27′59.99E) 
(Fig. 1). Tsavo East and Tsavo West National Parks occupy an 
area of 21 000 km2 (Smith and Kasiki 2000) and are sepa
rated by the Taita Taveta County (17 084 km2), which acts as 
a vital corridor and dispersal area for wildlife travelling 
between the two national parks (Smith and Kasiki 2000;  
McKnight 2004). In 2015 the County’s human population 
was estimated at ~329 000, with the most common liveli
hood being small-scale farming (MoALF 2016). As of the 
most recent aerial census count, Tsavo is also home to 
~12 866 elephants (Ngene et al. 2017), the largest popula
tion of elephants in Kenya. 

Taita Taveta largely comprises agricultural areas, as well 
as human settlements, private ranches and conservancies. 
This includes the Rukinga Wildlife Sanctuary (323 km2), 
part of the Kasigau REDD+ Wildlife Corridor running cen
trally through Taita Taveta (Freund and Bird 2013). 
Rukinga was run as a commercial cattle ranch up until 
1997, when it was converted to a wildlife sanctuary by 

Wildlife Works Inc. The area was barren of wildlife; cattle 
had grazed the land to dust, there was heavy poaching, and 
charcoal burning was widespread (Wildlife Works 2021). 
Wildlife Works now protects Rukinga with their own rang
ers, who work alongside the Kenya Wildlife Service (KWS). 
With the environment restored and able to provide wildlife 
with a source of quality habitat (including forage for herbi
vores), the sanctuary is currently home to over 300 bird 
species, 20 bat species and 50 large mammal species, includ
ing elephants (Freund and Bird 2013). Human–elephant 
conflict occurs throughout Taita Taveta (Smith and Kasiki 
2000; King et al. 2017; Troup et al. 2020), including in the 
agricultural communities in close proximity to Rukinga 
(Kagwa 2011; Von Hagen 2018). The sanctuary primarily 
consists of wooded bushland, with small pockets of grass
land and shrubland (Mutiti et al. 2017). Several community 
owned ranches/sanctuaries provide a permanent water sup
ply for wildlife during the dry season, including 
Rukinga W.S. 

Tsavo National Park consists of semiarid savannah, with 
the primary vegetation type being remnants of the formerly 
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Fig. 1. Map of the study area. Tsavo East and West N.P.s are 
separated by the Taita Taveta County (largely comprised of agricul
tural areas and ranches); Rukinga W.S. provides refuge for wildlife 
outside the national parks.   
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extensive Acacia commiphora woodlands, which have been 
heavily modified by elephants (Cobb 1976). The parks are 
now dominated by dry grassland and shrubland, with some 
areas of wet grassland, forest and bushland. A short, heavy 
wet season occurs from November to December, followed by 
the long, weaker rains from March to May (Omondi et al. 
2008). Spatial and temporal patterns of rainfall are 
unpredictable, ranging from 250 to 700 mm with an average 
of 550 mm annually (van Wijngaarden 1985; Ngene et al. 
2014). There are two permanent rivers in the Tsavo eco
system (the Galana and Tsavo Rivers, both of which are 
located in the Tsavo National Parks), in addition to several 
seasonal rivers (including the Tiva and Voi rivers) (van 
Wijngaarden 1985). 

Elephant faecal sample collection 

We collected fresh elephant faecal samples in Tsavo East 
N.P. from 1 April to 29 May (long wet season) and 2 August 
to 30 September (long dry season) 2018. Additional fresh 
faecal samples were collected from 1 August to 29 
September 2018 in Rukinga W.S., because the sanctuary 
experiences a marked increase in elephants during the 
long dry season. Elephant faecal samples were not collected 
during the wet season in Rukinga because of the lower 
elephant numbers, making it very difficult to locate fresh 
(within a few hours of defecation) samples. We initially 
identified seasons based on the general classification of 
seasons for Tsavo (Tyrell and Coe 1974; Leuthold and 
Leuthold 1978), and then slightly adjusted our classifications 
based on daily rainfall records. Daily rainfall records col
lected by the Tsavo East Research Centre staff (captured 
from a rain gauge located at the Research Centre, inside 
the Tsavo East N.P. Voi Entrance) were averaged with 
those collected by Save the Elephants’ Elephants and Bees 
Project (captured from a rain gauge at the Projects Research 
Centre, located in the small-scale farming community of 
Sagalla, adjacent to Tsavo East N.P. and approximately 20 
km north-west of Rukinga W.S.). Wet and dry seasons were 
then defined following the methods of Rasmussen et al. 
(2006), based on the amount of precipitation required to 
bring about a vegetative response. In total, 98 elephant 
faecal samples were collected: 41 during the long wet season 
in Tsavo East N.P., 30 during the long dry season in Tsavo 
East N.P., and 27 during the long dry season in Rukinga W.S. 

In Tsavo East N.P., dung piles were located by following 
two main roads (Mudanda and Aruba transects) that had 
been identified by local rangers or research assistants as 
regularly utilised by large numbers of elephants (see  
Fig. 1). We visited Tsavo East N.P. every 3–4 days, alternat
ing our search of the two transects each sampling day. In 
Rukinga W.S., dung piles were located opportunistically, 
often near dams where elephants were known to frequent. 
We visited Rukinga every 4 days, searching several areas 
known to be commonly utilised by elephants on a rotational 

basis. All faecal samples were collected from unknown indi
viduals, and it was rare that we had the opportunity to see 
the elephant whose dung we collected. It was therefore not 
possible to identify the exact age of the elephant whose 
dung we sampled. Dung <12 cm in boli diameter was not 
collected to avoid sampling of young elephants, which may 
vary in their stress response compared with older elephants 
(see Woolley et al. (2009)). Fresh faecal samples were 
selected in order to avoid those where hormones had 
already started to degrade (Wong et al. 2016). The majority 
of samples were estimated to be collected <3 h after defe
cation, as indicated by their moist interior, strong odour, 
and unhardened outer mucus layer (hardening of the mucus 
layer occurs quickly from exposure to the sun, causing it to 
dry out). Due to our relatively small sample size (an average 
of 33 across each location and season), in addition to the 
large population of elephants in Tsavo, we considered each 
faecal sample to be independent. Over 6000 elephants are 
estimated to be distributed in the southern area of Tsavo 
East N.P. (Ngene et al. 2017) (where our transects identified 
by research staff as heavily utilised by elephants were cen
trally located), thus the probability of sampling the same 
elephant more than once was very small. Similarly, the 
Kasigau Wildlife Corridor (which includes Rukinga W.S.) is 
utilised by ~2000 individuals (Wildlife Works 2021), and 
re-sightings of the same individuals in Rukinga W.S. have 
been reported to be relatively low (McKnight 2004). Further, 
due to our sampling design, a maximum of two faecal samples 
were collected every 6–8 days along the same transect/in the 
same area of both locations, ensuring that samples from the 
same area were not collected closely in time. 

We obtained two samples from the inner core of each 
dung pile. Because hormones do not distribute evenly, we 
collected small sections of dung from several areas of several 
boli from each separate dung pile; our final samples were a 
mixture of these small sections. The first sample was col
lected for hormone analysis, specifically glucocorticoid 
metabolites (fGCMs), in addition to progestogen and testos
terone metabolites. Faecal progestogen and testosterone 
were analysed in order to use as controls for reproductive 
status, due to the sex of elephants being unknown. 
Glucocorticoids have previously been demonstrated to cor
relate with reproductive state in both sexes of African and 
Asian elephants, increasing during pregnancy (Foley et al. 
2001; Kajaysry and Nokkaew 2014) and the oestrous cycle 
in females (Fanson et al. 2014; Glaeser et al. 2020; Edwards 
and Brown unpubl. data), as well as during musth in bulls 
(Brown et al. 2007; Chave et al. 2019). Therefore, quantify
ing these hormone metabolites in addition to fGCM enabled 
us to control for any potential differences in fGCM that may 
have been related to reproductive status. 

The second faecal sample (~10–20 g DM) was used for an 
analysis of total N of faeces (Nf), a proxy for diet quality in 
herbivores (Leslie et al. 2008). We used Nf as an indicator of 
habitat quality between seasons (wet vs dry), because 
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nutritional stress was considered a likely reason for poten
tial seasonal differences in fGCM levels, as has been shown 
in several previous studies (Rangel-Negrín et al. 2009;  
Davies et al. 2014; Lèche et al. 2014). If locational variation 
(between Tsavo East N.P. and Rukinga W.S.) in fGCMs was 
found, we considered this likely to be due to differences in 
proximity to human disturbance. However, following years 
of degradation before being taken over by Wildlife Works, 
we also considered it pertinent to assess Rukinga’s habitat 
quality. Samples collected for Nf analysis were thoroughly 
mixed, spread to 1-cm thickness across a piece of A4 paper, 
and then air-dried out of direct sunlight before being trans
ferred into paper bags. 

Due to the absence of sample freezing facilities at our 
remote field site, we extracted and stored 1.00-g faecal 
samples for hormone analysis following the protocol 
described by Edwards et al. (2014), with some small modi
fications. Firstly, we used Whatman® syringe filters to sep
arate the extract from the faecal material, followed by an 
additional 1 mL 90% MeOH to rinse the filter. We then 
added 6.75 mL dH2O to the faecal extract, to achieve the 
required 40% MeOH concentration for loading into the C8 
SPE cartridges. Samples were stored upright in an airtight 
container at ambient temperature for up to 6 months, then 
exported to the Smithsonian Conservation Biology Institute 
(SCBI) in the U.S.A. At the SCBI, hormone metabolites were 
eluted from the SPE cartridges using 5 mL 100% MeOH, 
evaporated to dryness, and re-suspended in 1-mL phosphate 
buffer (39 mM NaH2PO4, 61 mM Na2HPO4, 0.15 mM NaCl; 
pH 7.0). Extracts were stored frozen at −20°C until hor
mone analysis, described below. 

Endocrine analyses 

fGCMs were measured using a double antibody enzyme 
immunoassay (EIA) incorporating a secondary goat-anti rab
bit IgG antibody and polyclonal rabbit anti-corticosterone 
antibody (CJM006, C. Munro) adapted from Watson et al. 
(2013) and previously described by Edwards et al. (2019). 
The immunoassay was validated biochemically for measur
ing GCs in faecal extracts through parallelism (y = 1.214x + 
1.921, R2 = 0.983, F1,7 = 406.405, P < 0.001) and matrix 
interference assessment (y = 1.263x − 36.805, R2 = 0.972, 
F1,4 = 140.149, P < 0.001). This assay has previously 
been biologically validated for measuring adrenocortical 
activity in African elephants following an adrenocortico
trophic hormone (ACTH) challenge (Santymire et al. 2012). 

Faecal progestogen metabolites were measured using 
a double antibody EIA incorporating a secondary goat- 
anti mouse IgG antibody and monoclonal mouse anti- 
progesterone antibody (CL425, C. Munro) adapted from  
Munro and Stabenfeldt (1984) and previously described by  
Glaeser et al. (2020). The immunoassay was validated bio
chemically for measuring progestogens in faecal extracts 
through parallelism (y = 1.175x − 15.039, R2 = 0.946, 

F1,6 = 105.474, P < 0.001) and matrix interference assess
ment (y = 1.071x − 6.067, R2 = 0.990, F1,4 = 402.391, 
P < 0.001). This assay has previously been biologically 
validated through demonstration of increased progestagen 
metabolite concentrations during the oestrous cycle and 
pregnancy in female African elephants (Graham et al. 
2001; Freeman et al. 2011). 

Faecal androgen metabolites were measured using a dou
ble antibody EIA incorporating a secondary goat-anti rabbit 
IgG antibody and polyclonal rabbit anti-testosterone anti
body (R156/7, C. Munro) adapted from Munro and 
Stabenfeldt (1984). The cross-reactivities of the R156/7 
antibody have been reported elsewhere (DeCatanzaro et al. 
2003). This EIA follows the protocol for fGCMs as described in  
Edwards et al. (2019) with the following exceptions: testos
terone standards ranged from 0.047 to 12 ng mL−1; working 
dilutions of testosterone-HRP (25 μL; 1:50 000; C. Munro) and 
primary anti-testosterone antibody (25 μL; R156/7 1:50 000); 
and incubation of chromogenic substrate for 10 min. The 
immunoassay was validated biochemically for measuring 
androgens in faecal extracts through parallelism (y = 
1.576x − 9.275, R2 = 0.998, F1,5 = 2797.389, P < 0.001) 
and matrix interference assessment (y = 1.160x − 13.609, 
R2 = 0.992, F1,4 = 488.900, P < 0.001). Faecal extracts were 
diluted 1:10, 1:50–1:300, and 1:20–1:100 for analysis of gluco
corticoid, progestagen and androgen metabolites, respectively. 
Inter and intra-assay coefficients of variation (CVs) for all EIAs 
were maintained below 15% and 10%, respectively. 

Assessment of habitat quality: total N of elephant 
faeces 

Near infrared spectroscopy (NIRS) 
Near Infrared Spectroscopy (NIRS) was used to estimate 

the total N concentration of elephant faeces (Nf), which 
involves irradiating samples with near infrared light in order 
to obtain their near infrared reflectance spectra. The relation
ship between these spectra and the spectra of a subset of the 
samples that have been measured for nutritional traits can be 
used to predict the same traits in additional unknown samples 
(Foley et al. 1998; Rothman et al. 2009). 

Collection of NIR spectra 
All 98 dried elephant faecal samples were transported to 

Crop Nutrition Laboratory Services Ltd. in Nairobi, where 
they were ground to pass a 1.0-mm sieve (Foss Tecator 
Cyclotec centrifugal mill). The spectra of each sample between 
800 nm and 2500 nm in duplicate was taken with a Bruker 
MPA Fourier Transform near-infrared reflectance (NIR) spec
trometer. All spectral data were converted from wavenumbers 
to wavelengths in MATLAB R2016b using spline inter
polation. Following methods described in Au et al. (2020), 
spectra were then cropped from 1102 nm to 2498 nm with 
2-nm intervals, and the data were subjected to standard 
statistical pre-treatments to reduce baseline variation and/ 
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or noise; specifically, taking a first-derivative with a gap 
window of 7, second order polynomial and standard normal 
variate. The average spectra of each duplicate pair was then 
calculated in R version 3.5.1 (R Core Team 2019). 

Calibration, model selection and validation, and 
chemical analysis 

Nf values predicted for the 98 elephant faecal samples 
collected in this study represented a subsample of the Nf 
values predicted for a larger nutritional study of elephant 
diet quality in Tsavo, carried out between April 2017 and 
September 2018 (G. Troup, unpubl. data). Nf concentrations 
in the larger study were predicted from statistical models, 
using a subset of samples that best represented the spectral 
variation within the dataset (i.e. calibration samples). We 
identified these calibration samples using a Kennard Stone 
algorithm with Mahalanobis distance metric, applied from 
the R package prospectr (Stevens and Ramirez-Lopez 2013). 
Sixty-four out of the entire dataset of 464 samples were 
analysed for Nf using the Dumas method (Etheridge et al. 
1998; Marco et al. 2002) in a Leco TruSpec CHN elemental 
analyser (Leco St. Joseph, Michigan). 

Partial least squares (PLS) regression was used to model 
the relationship between NIR spectra and nutritional traits in 
MATLAB 2016b. Due to laboratory constraints, there were a 
limited number of samples chemically analysed; therefore, 
we allocated all of these samples to calibration. Recent 
research has suggested that introducing nested structure of a 
dataset during cross-validation can provide information about 
the predictive performance of a model (Au et al. 2020). We 
developed 30 PLS models, with the number of latent factors 
ranging from 1 to 30, and identified a satisfactory number of 
latent factors to build a single prediction model using ‘leave- 
season/year-out’ cross-validation. This cross-validation tech
nique involves temporarily removing samples from a given 
year and season, developing a PLS model using the remaining 
samples, and then testing the model with the excluded sam
ples. These steps were repeated until all samples were tested, 
and their fitted values were compared to their reference 
chemistry value. We selected the optimal PLS model by bal
ancing the lowest root mean squared error of cross-validation 
(RMSECV) and coefficient of determination (R2) with the 
fewest number of latent factors. Our optimal PLS model was 
developed with six latent factors; the root mean squared error 
of cross validation (RMSECV) was 0.32% Nf, and the 
coefficient of determination (R2) was 0.58. This final PLS 
model was used to predict Nf of all samples in the dataset, 
and the predicted data were used for statistical analysis. 

Assessment of habitat quality – NDVI 

The Normalised Difference Vegetation Index (NDVI), a 
remotely sensed indicator of vegetation productivity 
(Pettorelli et al. 2005), was employed as an additional 
indicator of habitat quality between seasons (wet vs dry) 

and locations (Tsavo East N.P. vs Rukinga W.S.). Ninety- 
eight individual 250-m 16-day composite MODIS NDVI val
ues corresponding to each faecal sample (based on date and 
GPS location) were extracted using NASA’s EarthData 
AppEEARS software (AppEEARS 2019) and data (Didan 
2015a, 2015b). Aqua (MYD) and Terra (MOD) values were 
averaged for final calculations of the individual NDVI values 
corresponding to each of the 98 faecal samples. 

Statistical analysis 

Generalised Linear Mixed Models (GLMMs) were created 
using the lme4 package (Bates et al. 2015) in R version 
3.5.1 (R Core Team 2019). All models were separately tested 
for spatial autocorrelation using the Moran’s I test from the 
ape package (Paradis and Schliep 2019), which is reported 
only where significant. We created a GLMM using fGCM 
concentration as a (continuous) response variable in order 
to assess differences in elephant fGCM concentration between 
seasons (wet, dry) and locations (Tsavo East N.P., Rukinga 
W.S.). We applied a log10 transformation to this data in order 
to meet statistical normality requirements (Munshi-South 
et al. 2008; Tingvold et al. 2013; Hunninck et al. 2018). 
Given that the sex of elephants was unknown, faecal proges
togen and androgen metabolite concentrations were included 
as covariates to control for reproductive status. Area (transect 
or more specific location) was used as a single random effect. 

In order to assess habitat quality between seasons and 
locations a posteriori, we created two separate GLMMs; one 
using Nf as a (continuous) response variable, and one using 
NDVI as a (continuous) response variable. Both models 
included season (wet, dry) and location (Tsavo East N.P., 
Rukinga W.S.) as fixed effects, and area as a single random 
effect. We applied a square root transformation to our Nf 
data in order to meet statistical normality requirements. 

Results 

Comparison of habitat quality between seasons 
(wet vs dry) and locations (Tsavo East N.P. vs 
Rukinga W.S.) 

Nf in samples collected during the wet season in Tsavo East 
N.P. was significantly higher than for those collected in the 
dry season (t = 16.13, P ≤ 0.01, Fig. 2a). There was no 
significant difference in Nf collected from elephants in Tsavo 
East N.P. and Rukinga W.S. during the dry season (t = 
−0.19, P = 0.87, Fig. 2a). NDVI values in Tsavo East N.P. 
were significantly higher during the wet season than dry 
season (t = 16.45, P ≤ 0.01, Fig. 2b), and there was no 
significant difference in NDVI between Tsavo East N.P. and 
Rukinga W.S. (t = −0.44, P = 0.69, Fig. 2b). There was 
significant spatial autocorrelation in this model (Moran’s I 
test observed = 0.14, s.d. = 0.06, P = 0.02), but this was 
not considered to affect our analysis heavily because we were 
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interested in analysing broad differences in NDVI between 
seasons and locations. A summary of statistics for habitat 
quality across seasons and locations is provided in Table 1. 

Comparison of elephant fGCMs between seasons 
(wet vs dry) and locations (Tsavo East N.P. vs 
Rukinga W.S.) 

The fGCM concentrations of samples collected during the dry 
season in Tsavo East N.P. were higher than those collected 
during the wet season, although the difference was margin
ally non-significant (t = −1.86, P = 0.06, Fig. 3). There was 
no significant difference in the fGCM concentration of sam
ples collected in Tsavo East N.P. and Rukinga W.S. during the 
dry season (t = −0.37, P = 0.72, Fig. 3). There was a 
significant effect of faecal androgen (t = 5.86, P < 0.01) 

and faecal progestogen (t = 3.31, P < 0.01) on fGCM 
concentrations (Table 2). A summary of statistics for fGCM 
concentrations across seasons and locations is provided in  
Table 2. A summary of untransformed fGCM, androgen and 
progestogen concentrations across seasons and locations is 
provided in Table 3. 

Discussion 

This study assessed seasonal variation in the faecal gluco
corticoid metabolite concentrations of African elephants 
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Fig. 2. Means ± s.e. of untransformed habitat quality data for Tsavo 
East N.P. during the wet (N = 41) and dry (N = 30) seasons, and 
Rukinga W.S. during the dry season (N = 27). (a) Nf, and (b) NDVI.  

Table 1. Effect of season and location on habitat quality (Nf and 
NDVI) based on GLMMs.        

sqrt(Nf) ~ season × location + (1|area) 

Fixed Estimate s.e. d.f. t-value P-value   

Intercept – 
Rukinga (dry)  

1.02  0.02  2.31  46.20  <0.01 

Season – wet  0.31  0.02  82.52  16.13  <0.01 

Location – Tsavo  0.00  0.04  1.33  −0.19  0.87        

NDVI ~ season × location + (1|area) 

Fixed Estimate s.e. d.f. t-value P-value   

Intercept – 
Rukinga (dry)  

0.27  0.02  6.32  10.81  <0.01 

Season – wet  0.33  0.02  90.20  16.45  <0.01 

Location – Tsavo  −0.02  0.04  3.81  −0.44  0.69   
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Fig. 3. Boxplots of untransformed fGCM data for elephants from 
Tsavo East N.P. during the wet (N = 41) and dry (N = 30) seasons, 
and Rukinga W.S. during the dry season (N = 27). The lower and 
upper limits of the boxplots represent the 25th and 75th percentiles, 
the centre line is the median value, the ends of the vertical lines 
indicate the minimum and maximum values, and the circles outside 
represent potential outliers.   
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living in Kenya’s drought-prone, anthropogenic landscape of 
Tsavo, and whether any observed differences may corre
spond to changes in habitat quality. We found limited sup
port for our first hypothesis (H1), because there was a 
marginally non-significant difference in elephant fGCM con
centrations between dry and wet seasons in Tsavo East N.P., 
although habitat quality (as indicated by Nf and NDVI) was 
significantly poorer during the dry season. The data did not 
support our second hypothesis (H2), because elephants sam
pled within privately protected Rukinga W.S. during the dry 
season exhibited no significant difference in fGCMs when 
compared with those from Tsavo East N.P. However, there 
was also no difference in habitat quality (as indicated by Nf 
and NDVI) between the two locations. In contrast to most 
other studies exploring the stress response of elephants, by 
analysing both temporal and spatial variation in fGCMs we 
provide a more holistic picture of the physiological response 
of these mega-herbivores as they search for resources. Here 
we discuss how elephants living in Tsavo physiologically 
respond to decreasing habitat quality in drier periods, and 
in what way land outside of formally protected areas can 
benefit elephants during these seasons. 

Our assessment of Nf and NDVI in Tsavo East N.P. indi
cates that habitat quality during the dry season is inferior to 
the wet season. Specifically, we found that elephant Nf is 
significantly lower in the dry season, consistent with several 
other studies assessing seasonal variation in African ele
phant diet quality (Codron et al. 2006; Woolley et al. 
2009; Turner et al. 2013). We also observed NDVI to be 
significantly lower during the dry season than the wet sea
son. NDVI is widely used to describe patterns in the habitat 
selection, seasonal movements and distribution of elephants 
throughout Africa (Selier et al. 2015; Gara et al. 2016;  
Purdon et al. 2018). Poor nutrition can impact the health 
of wildlife in a number of ways, including decreasing 

immunity, and ultimately limiting the chance of survival 
(reviewed by Acevedo-Whitehouse and Duffus (2009)). 

Although differences in fGCM concentrations between 
wet and dry seasons did not quite reach significance, we 
did find a tendency for higher fGCM concentrations during 
the dry season in Tsavo East N.P., when habitat quality was 
poorer. Several studies have reported elephants to exhibit 
higher fGCM concentrations during the dry season (Foley 
et al. 2001; Viljoen et al. 2008), but this difference is not 
always apparent (Woolley et al. 2009). Inconsistencies 
between study populations can be influenced by factors 
such as age and sex, or attributed to the level of habitat 
quality change between seasons (Woolley et al. 2009). Our 
results support those of Woolley et al. (2009), who reported 
an overall 20% decrease in African elephant diet quality (Nf) 
from wet to dry seasons in South Africa’s Pilanesberg N.P., but 
no seasonal difference in the stress hormone concentration of 
adults. Habitat quality decreased more between dry and wet 
seasons in our study (~42% reduction in Nf and ~% 57 
reduction in NDVI) in comparison with Woolley et al. 
(2009), which may explain why seasonal variation in our 
fGCM concentrations were closer to significance. 

The dry season conditions that presented during our 
study period were typical of bi-annual dry season conditions 
in the ecosystem, thus our results may suggest that ele
phants living in Tsavo are physiologically unaffected by 
typical seasonal changes in habitat quality. Alternatively, 
they may be physiologically affected, yet are able to adapt to 
such changes. We state these possibilities cautiously due to 
our single year of data collection, and note that both of these 
possibilities rely on the assumption that the dry season 
conditions observed during our study period were ade
quately limited to potentially cause elephants’ substantial 
nutritional stress. Research by Rasmussen et al. (2006) implies 
that following the peak in NDVI in a given wet season, 

Table 2. Effect of season and location on fGCM concentrations based on a GLMM.        

Log10(fGCM) ~ season × location + fAnd + fProg + (1|area) 

Fixed Estimate s.e. d.f. t-value P-value   

Intercept – Rukinga (dry)  0.74  0.06  6.00  12.43  <0.01 

Season – wet  −0.06  0.03  86.84  −1.86  0.06 

Location – Tsavo  −0.04  0.10  3.86  −0.37  0.72 

fProg  0.00  0.00  88.90  3.31  <0.01 

fAnd  0.00  0.00  88.24  5.86  <0.01   

Table 3. Means ± s.e. of untransformed fGCM, androgen and progestogen concentrations in Tsavo East N.P. during the dry (N = 30) and wet 
(N = 41) seasons, and in Rukinga W.S. during the dry season (N = 27).      

Location – season fGCM (ng g−1) Androgen (ng g−1) Progestogen (ng g−1)   

Tsavo East N.P. – wet season  6.10 ± 0.35  12.60 ± 3.28  40.58 ± 7.29 

Tsavo East N.P. – dry season  7.54 ± 0.74  11.01 ± 1.59  52.58 ± 11.26 

Rukinga W.S. – dry season  7.52 ± 0.79  12.16 ± 2.65  18.54 ± 3.23   
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sufficient forage should be available for elephants up to 
3 months into the proceeding dry season. After finding the 
highest mortality rate of elephants in Tsavo to occur at low 
NDVI values and around permanent water, Wato et al. (2016) 
therefore strongly suggested that this elephant population 
would starve to death when dry season conditions extend 
beyond 3 months, as a result of depleting all available forage 
resources near permanent water. While our study focused on 
the quality (not quantity) of habitat available to elephants, 
our dry season sampling took place more than 3 months into 
the dry season. Coupled with the suggestion made by Wato 
et al. (2016), our results regarding Nf and NDVI infer that the 
dry season conditions observed during our study period would 
have been sufficiently limited to potentially cause elephants 
to experience considerable nutritional stress. 

Africa is predicted to experience more severe drought 
periods in the future (Masih et al. 2014; Gan et al. 2016), 
and understanding how elephants will respond to these 
conditions is essential for their long-term survival. Tsavo 
has historically experienced low and unpredictable rainfall 
(Ottichilo 1987), and much of the ecosystem falls under a 
‘drought-prone’ zone (Corfield 1973; Leuthold and Sale 
1973). Given that elephants tended to exhibit higher 
(although not significantly) fGCMs during the typical dry 
season sampled, it is possible that extreme drought condi
tions could cause elephants to experience chronic stress. 
Future research across multiple years is required to deter
mine how these mega-herbivores may physiologically 
respond to increasingly severe drought periods caused by 
climate change, noting that age and sex classes could be 
affected differently. This should not only involve the inclu
sion of a time period when conditions are representative of 
extreme (consistent, multi-year) drought, but should also 
include multiple wet seasons for comparison. 

African elephant movement is largely driven by the need 
for water and forage (Birkett et al. 2012; Wall et al. 2013;  
Tshipa et al. 2017). This can motivate elephants to leave the 
protection of national parks in search of alternative 
resources (Osborn 2003; Cook et al. 2015; Branco et al. 
2019), particularly during dry periods. In Tsavo, Rukinga 
W.S. experiences an influx of elephants during the dry sea
son. While the sanctuary is privately protected, it is 
unfenced and surrounded by human disturbances that 
could potentially cause elephants to exhibit an elevated 
stress response. In order to be beneficial for their use, 
Rukinga must provide elephants with a safe refuge when 
navigating through farming areas and human settlements. 
Elephants that move into the area from Tsavo East N.P. are 
required to cross the Nairobi–Mombasa Highway, which is 
heavy in commercial truck traffic. Previous research has 
shown that elephants may increase their speed when cross
ing unprotected roads (Blake et al. 2008), suggesting this to 
be a potentially stressful experience. 

Elephants residing in Rukinga or travelling to the area 
from the N.P. may have also actively chosen to engage in 

crop-raiding nearby farming communities (such as neigh
bouring Sisenyi (Von Hagen 2018) and others in Kasigua 
(Kagwa 2011)), before returning to the sanctuary for water 
and safe refuge. In support of this theory, elephant dung 
piles containing crops have been found in Rukinga (G. 
Troup, unpubl. data). Crop-raiding presents a significant 
risk to the survival of elephants through injury from farmers 
(Obanda et al. 2008; Mijele et al. 2013), and may be related 
to increased stress in elephants (Ahlering et al. 2011). Our 
finding that there is no difference in the fGCM concentration 
of elephants from Rukinga W.S. and Tsavo East N.P. suggests 
that these potential disturbances resulting from being in 
closer proximity to humans when moving in and around 
Rukinga are not sufficient to alter fGCMs on a chronic level. 

Although previously mismanaged and grazed to dust, our 
results additionally show that improved management by 
Wildlife Works has resulted in Rukinga exhibiting compara
ble habitat quality (as indicated by Nf and NDVI) to that of 
Tsavo East N.P. This is also important for ensuring Rukinga’s 
benefit for use by elephants, and combined with our finding 
of no locational difference in fGCMs, provides support for 
the suitability of Rukinga W.S. in offering a safe refuge of 
sufficient habitat quality for elephants when moving outside 
the N.P. Our results are consistent with the conclusion made 
by Williams et al. (2018) that the Kasigau Wildlife Corridor 
(which includes Rukinga) is a key corridor and habitat for 
elephants in Tsavo; however, we are cautious in our support 
and highlight the limitation of only including one (dry) 
season in our sampling. As the surrounding land continues 
to be cleared and converted to agriculture (Gathongo 2012;  
Pearlman 2014), safe refuges outside the national parks will 
become increasingly important for the conservation of wild
life in the Tsavo ecosystem. This is especially true for wide- 
ranging species such as elephants, particularly during dry 
periods when they may be more likely to move closer to 
areas of human disturbance in search of alternative 
resources such as water and forage. 

As previously mentioned, the results of this study would 
be greatly strengthened by future research across multiple 
years (including multiple wet and dry seasons), which 
would limit any element of speculation regarding the possi
ble explanations for our seasonal fGCM results in Tsavo East 
N.P., and potential conservation benefit of Rukinga W.S. 
This would also be beneficial for investigation into how 
elephants living in Tsavo may physiologically respond to 
increasingly severe drought periods caused by climate 
change. Although they were only included in our study to 
control for potential correlations between hormones, we 
observed a significant effect of androgen and progestogen 
on fGCM concentrations. Further detailed demographic 
information on the age and sex composition of the Tsavo 
elephant population would be necessary to discuss these 
results without conjecture, and may prove interesting to 
explore in the future. In addition, future studies could assess 
potential differences in the stress response of elephants 
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found in neighbouring agricultural communities compared 
with those from protected areas such as the Tsavo National 
Parks and/or Rukinga W.S., providing insight into how they 
may adapt to expanding ‘high conflict’ zones in this anthro
pogenic landscape. 

Conclusion 

With semiarid ecosystems such as Tsavo often experiencing 
low and unpredictable rainfall, it is important to understand 
how keystone species, such as the African elephant, will 
respond to increasing climate pressures. We found habitat 
quality (as indicated by NDVI and Nf) to be significantly 
poorer during the dry season, which corresponded with only 
marginally higher fGCM concentrations. These findings indi
cate that elephants living in Tsavo may be physiologically 
unaffected by (or adapt to) typical seasonal changes in 
habitat quality that could lead to nutritional stress, but 
further investigation is required to determine how elephants 
would respond to more extreme drought conditions driven 
by climate change. We also observed no difference in fGCM 
concentrations between elephants from Tsavo East N.P. and 
privately protected Rukinga W.S. (part of the Kasigau REDD 
+ corridor connecting Tsavo East and Tsavo West N.P.), as 
well as comparable habitat quality between the two loca
tions. This suggests that Rukinga plays an important role in 
conservation efforts by providing elephants with a safe 
refuge of sufficient forage quality when travelling outside 
the Tsavo National Parks. 
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