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Long-term quantification of temporal species trends is fundamental to the assignment
of conservation status, which in turn is critical for planning and targeting management
interventions. However, monitoring effort and methodologies can change over the
assessment period, resulting in heterogeneous data that are difficult to interpret.
Here, we develop a hierarchical, random effects Bayesian model to estimate site-
level trends in density of African elephants from geographically disparate survey data.
The approach treats the density trend per site as a random effect and estimates a
parametric distribution of these trends for each partitioning of the data. Data were
available from 475 sites, in 37 countries, between 1964 and 2016 (a total of 1,325
surveys). We implemented the model separately and in combination for the African
forest (Loxodonta cyclotis) and savannah (Loxodonta africana) elephant species, as well
as by region. Inference from these distributions indicates a mean site-level decline for
each species over the study period, with the average forest elephant decline estimated to
be more than 90% compared to 70% for the savannah elephant. In combination, there
has been a mean 77% decline across all sites; but in all models, substantial heterogeneity
in trends was found, with stable to increasing trends more common in southern Africa.
This work provides the most comprehensive assessment undertaken on the two African
elephant species, illustrating the variability in their status across populations.

African elephant | density trend | conservation status

Global biodiversity decline (1, 2) is accelerating and undermines the environmental
systems of the planet (3). Large bodied, long-lived mammals, which can have
disproportionate impacts on ecosystem functioning (4, 5), are among the most threatened
taxa (6, 7), and all three extant elephant species (Loxodonta africana,Loxodonta cyclotis, and
Elephas maximus) serve as notable examples (8). Their flagship status and the increasingly
limited distribution of extant elephant populations have made their conservation a global
priority (9).

In Africa, populations of L. africana and L. cyclotis are becoming increasingly
fragmented, and typically tethered to protected areas (9, 10). Human pressures have
accelerated over the past 50 years, with major threats including habitat loss caused by
land conversion to sustain growing human populations (11, 12), and the commercial
trade in elephant parts (13). However, quantifying their population status has been
challenging. The habitable area for African elephants is vast, and monitoring has been
inconsistent, with different methodologies applied at different sampling sites at different
times (9). As such, we lack a systematic assessment of changes in the two species at the
continental scale and over an appropriate time period.

Surveys of elephant populations were initiated in the 1960s at a handful of sites
due to concerns about the impact of high elephant densities on their ecosystems (14).
Efforts to survey elephant populations increased in the 1970s and 1980s in response to
unsustainable, illegal exploitation for ivory markets (15, 16). These initial survey efforts
serve as valuable, quantitative baselines for population status; though they do not capture
the periods of decline and growth in elephant numbers that occurred across Africa in
the preceding century (17). While some population specific trends have been compiled
(15, 18–21), few attempts have been made to quantify the multidecadal trend across the
entire continent. Such an assessment is critical to understand the species conservation
status. Furthermore, site-based heterogeneity in the scale of decline or increase can
identify areas of concern; this can then underpin local, national, and global conservation
decisions (22).

Despite the need for a comprehensive assessment, survey data that differ in timing,
spatial extent, and method have complicated the estimation of trends over time. Range
loss and the compression of elephants into protected areas has further affected the
interpretation of survey counts, since surveys are often deliberately focused on areas of
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Table 1. Summary of site-level survey data per partition, with n refering to the number of surveys
No. of No. of No. of Average Average Average No. of sites No. of sites

Partition Years countries surveys (n) sites n per site years per site n per year with n = 1 with n > 3

Global 1964 to 2016 37 1,325 475 2.79 14.09 0.20 171 138
Species:

Forest 1974 to 2015 18 350 150 2.33 11.47 0.20 61 27
Savannah 1964 to 2016 23 975 325 3.00 15.30 0.20 110 111

Region:
Forest 1974 to 2015 18 350 150 2.33 11.47 0.20 61 27
East 1966 to 2015 8 308 98 3.14 17.71 0.18 33 32
North 1970 to 2015 5 88 34 2.59 15.82 0.16 10 7
South 1964 to 2016 10 579 193 3.00 13.98 0.21 67 72

known high population numbers (23–25). Here, we develop a
framework that is able to accommodate these disparate data.
It integrates across all available survey count data to estimate
a parametric distribution of site-level changes in population
density over time. Inference can then be made from the mean
expectation of this distribution. We adopted a parsimonious
Bayesian modeling approach that intentionally avoided complex
assumptions concerning the dynamics at each site and apply
this framework to survey data from 475 different sites in 37
countries across the African continent, collected over different
time-frames between 1964 and 2016. The bulk of these data is
curated in the African Elephant Database (9, 17). Surveys covered
an average of 15 y per site (equivalent to 0.2 surveys per year;
Table 1), with 138 sites containing more than three surveys.
The model was initialized in 1963, giving a 53 y assessment
period, and estimates a multiplicative change (trend) in the
density over that time period. From the mean trend per site,
we infer conservation status for savannah (L. africana) and forest
(L. cyclotis) elephant species, both combined, and at a regional
level. We discuss the strengths and weaknesses of our approach,
its relationship to species status inferred from International
Union for Conservation of Nature (IUCN) Red List catego-
rization criteria, and policy and management implications of our
results.

Results

We estimated trends using three different partitionings of the
data: the global (continental) population of African elephants
(one partition with forest and savannah species combined); each
species separately (two partitions); and partitioning into Forest
(L. cyclotis only), North, East, and South regions (L. africana
only) of the elephant range (four partitions). Three models
were applied with different population dynamic assumptions:
constant growth rate (the “constant” model), time-variant linear
change in the growth rate (the “linear” model), and density-
dependent growth (SI Appendix, Population Model Derivation).
The density-dependent model did not converge for any of the
runs, and we have therefore excluded it from further discussion
(SI Appendix, Model Selection). The linear model for the regional
data partitioning also did not converge and is therefore not
included in the final results.

In Table 2, we report posterior estimates of the mean trend.
For the global and species-specific partitionings of the data,
the constant and linear models yielded similar results, with
the linear model generating a small improvement in fit (SI
Appendix, Model Selection). All trend estimates had a potential
scale reduction factor (R̂; 26) close to one, consistent with

convergence, and a posterior effective sample size (Neff ; 27)
sufficient for inference. The model fits and posterior distributions
of the trend are given in Fig. 1. Because the linear model
did not converge for the regional partitioning, we have shown
results for the constant model, with a complete set of figures in
SI Appendix, Results.

From the global model runs, the average trend per site across
the continent between 1963 and 2016 (i.e., the expected change,
E[Λj]) is estimated to be 20 to 25%, indicating that the average
density per site has declined by 75 to 80% over that time (or
approximately 3% per year). From the credible intervals of the
constant model, there is evidence that the average site has changed
by <41% (declined by >59%) with a 97.5% probability. For
the species-specific model the average trend is 4 to 10% for the
forest elephant and 28 to 36% for savannah; corresponding to
average site-level declines of 90 to 96% (5% per year) and 64 to
72% (2% per year) respectively.

For the regional model there were strong differences in the
estimated average trend between regions, with posterior estimates
of 8 to 9% for Forest (average decline of approximately 4% per

Table 2. Posterior estimates of the trend (E[�j]) for
global, species-specific, and regional partitions, assum-
ing either a constant growth rate or linear change in the
growth rate over time

Posterior

Partition Model Mean Median 95% CI Neff

Global Constant 0.25 0.24 (0.14,0.41) 6,176
Linear 0.24 0.20 (0.07,0.56) 2,758

Species:
Forest Constant 0.09 0.08 (0.03,0.18) 6,911

Linear 0.10 0.04 (0.00,0.39) 4,091
Savannah Constant 0.36 0.33 (0.17,0.66) 5,736

Linear 0.36 0.28 (0.09,0.91) 3,662
Region:

Forest Constant 0.09 0.08 (0.03,0.19) 8,283
Linear – – – –

East Constant 0.25 0.23 (0.10,0.49) 9,507
Linear – – – –

North Constant 0.01 0.00 (0.00,0.02) 9,936
Linear – – – –

South Constant 1.30 1.11 (0.43,2.76) 9,626
Linear – – – –

The posterior effective sample size (Neff ) is also shown, from a total ofN = 10,000 retained
posterior samples. All reported trend estimates had a potential scale reduction factor of
0.995 < R̂ < 1.005. The linear model with regional partitioning did not converge and is
excluded (SI Appendix, Model Selection).
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Fig. 1. Fit of the constant growth rate model to empirical survey numbers per site and year (Left panel) and posterior distribution for the trend E[Λj ] (Right
panel), per partition for: (A) global (i.e., continental scale), (B) species-specific, and (C) regional model runs. For the model fit, the median and 95% credible
intervals of the posterior predicted survey numbers are plotted against the observed survey numbers on a log-10 scale in units of one thousand individuals.
Predicted values that do not contain the observed value within their credible interval are colored in red. For the posterior distribution of the trend, intervals
representing the magnitude of the trend are shaded in green (>80%), yellow (80 to 50%), orange (50 to 20%), and red (0 to 20%). The posterior mean and
median values for E[Λj ] are shown as dashed and solid lines respectively.

site per year), 23 to 25% for East (approximately 3% per site per
year), 0 to 1% for North (>10% decline per site year), and 111
to 130% for South (<1% increase per site per year; Table 2).
Spatial heterogeneity was also evident in the distribution of site-
specific trends within each region, with the greatest heterogeneity
observed in the South (Fig. 2). Using the posterior median of
the estimated trend per site (Eq. 2), we categorized sites by the
magnitude of their decline. The number of sites in each category
is given in Table 3. For the South, 42% of sites demonstrated a
density increase over the modeled period. In contrast, only 10%
of East sites are estimated to have increased, and none in the
North. In the North 97% of sites exhibit a trend of 0 to 20%
(with 0% equivalent to extinction at that site). Among Forest
sites, only 3% of sites are estimated to have increased, with 92%
exhibiting a trend of 0 to 20%.

Discussion

African elephants are iconic species, and their decline highlights
the detrimental impacts of habitat loss (28) and overconsumption
of wildlife parts (29). While the threats are known and debated
in policy circles (30–32), an explicit characterization of their
conservation status has been lacking, despite decades of surveys
and monitoring. Historic efforts to aggregate and model survey
data have provided insight into trends that occurred in the
1970s and 1980s (15, 33), and trends have also been derived
over shorter recent periods (13, 19, 21, 34). However, a
comprehensive evaluation of trend information from African
elephant populations over the past half-century has been a critical
outstanding scientific need necessary for informing debate around

the species management and conservation (9, 35, 36). The results
presented here fulfill this need.

Our results complement, and are consistent with, the IUCN
Red List Assessments for African elephant (35, 36). In both
instances, we modeled the site-level density trend. However, for
the IUCN Red List Assessments, guidelines required an estimate
of the change in species-level population abundance over time
(37), which was calculated as an abundance-weighted average
of the site-level density trend. In the current study, we instead
present an estimate of the overall change that is obtained from
the central tendency of the distribution of density trends across
sites (Eq. 13).

The average trend across sites does not allow direct inference
of changes in the total population size. This would require each
density trend to be converted to numbers using a population area
size assumption, which we have not attempted to do here. Given
that both the survey area and the area occupied by each surveyed
population are known to have changed over the study period,
converting estimated trends in density to numbers is difficult
without invoking further assumptions, and therefore has the
potential to undermine the strength of our conclusions. While
changes in overall abundance are often reported in ecological
studies, we consider our presentation of the distribution of trends
in density to be more defensible in this instance. Furthermore, it
provides an arguably more representative picture of the status
of Africa’s elephants across the continent. Since a few large
populations can dominate trends in abundance, large regional
differences in abundance can bias estimates of the overall trend
toward the trend at sites with the largest populations. In cases
where there is strong heterogeneity in population size across
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Fig. 2. Distribution of estimates of the decline per site, Λi (Eq. 2) estimated from the constant model with regional partitioning. Points represent the posterior
median value per site, with 95% credible intervals in grey. In the Left panel, all sites are shown; in the Right panel, sites are shown per region. The vertical axis
is the same for all plots, with the estimated decline omitted for sites not in a particular region. Results are on a log-scale. Estimates of the decline per site are
further listed in SI Appendix, Table S2.

the range of a species, with African elephant species being two
examples, the current approach provides an alternative means of
inferring conservation status.

In general, we have sought to maintain parsimony in our
analysis: A simple model allowed us to include a large amount
of noisy and inconsistent data that could not support a more
highly parameterized model. Density dependence could not be
estimated from the survey count data (there were three or fewer
surveys reported in over 70% of sites; Table 1) and was also
unjustified from an ecological perspective, with the majority
of sites likely far below carrying capacity (some protected sites
in southern Africa being likely exceptions). Instead, we have
assumed that trends per site are a product of density-independent
intrinsic growth and anthropogenic mortality only. Our analysis
suggested that an assumption of a constant growth rate was suf-
ficient to describe the data. Although higher-resolution temporal
changes may have occurred, more complex models offered little
additional explanatory power.

Such a parsimonious approach is inclusive, since it maximizes
the quantity of data that can be utilized and therefore ensures
the relevance of our analysis at the continental scale. Inclusivity
was furthered by treating site-specific trend estimates as random
effects. This allowed information to be shared between sites,
with the most informative sites (i.e., sites with the highest
quantity of data showing a consistent pattern) contributing most
to the overall trend estimate. A strength of the approach is
that it can provide a trend estimate for those sites with limited
information (other than knowledge that elephants are present)
without influencing, or otherwise degrading the overall result.

While our analysis spans 53 y, it represents less than the lifetime
of a long-lived elephant and only two elephant generations. It

does not offer insight into longer-term trends in either species,
despite interest and speculation regarding historical erosion of
elephant range (10). Information on the dynamics of elephant
populations in the time period that predates this analysis is
largely anecdotal given a sparsity of systematic monitoring. Ivory
harvesting is thought to have reduced during the interwar period,
potentially offering a respite from harvest-driven declines (17, 38)
though regional differences are thought to have existed (25).
Human population shifts, rapid growth, and land conversion
began to accelerate toward the end of World War II, which in turn
led to the compression of elephants into newly created protected
areas (14, 24, 39, 40). As a result, hypotheses about elephant
population trends prior to 1970 vary (17, 24, 40). Trends were
likely not similar across the range given variation in the intensity
and flux of different pressures and protections, but if comparable
survey data existed for a longer period of time, it is plausible that
an intervening period of population growth could have lessened
our estimate of the decline at some sites.

Despite the uncertain changes that occurred prior to the avail-
ability of survey data, there are reasons to suggest that our results
could underestimate the decline over the period we have analyzed.
In particular, survey data have been overwhelmingly collected
from nationally protected areas. Protected areas typically contain
the highest quality data and are therefore likely to be the most
influential in our analysis. In addition, unprotected areas in Africa
are known to have harbored elephant populations into the 1970s
and early 1980s that were subsequently extirpated, either due to
intensive ivory harvest or on account of habitat conversion. These
areas outside of protected areas were often not systematically
surveyed. Expert opinion has documented the presence and
roughly estimated the size of some of these populations, but such
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Table 3. Number of sites per discrete category of �i
(Eq. 2) for the constant growth rate models
Partition >1.0 1.0 to 0.8 0.8 to 0.5 0.5 to 0.2 0.2 to 0.0

Global 83 10 28 201 153
Species:

Forest 4 0 3 5 138
Savannah 85 8 19 136 77

Region:
Forest 4 0 3 5 138
East 10 2 8 53 25
North 0 0 0 1 33
South 82 64 6 8 33

Categorizations were based on the posterior median estimates. The total sites per partition
is given in Table 1.

anecdotal information could not be included in our analysis.
Where survey data have been collected, survey effort has often
been reduced as the population declines so as to rationalize costs.
For these reasons, less threatened populations are overrepresented
in the survey data used in our analysis, which may have led us to
underestimate the average decline.

Overall, our analysis provides a much-needed quantitative as-
sessment of conservation status for African elephants using survey
data from the past half century. While the mean site-level decline
has been striking, particularly in the northern savannah region,
many sites experienced growth. The heterogeneity was most
notable for savannah elephants, which experienced markedly
different trends both within and between regions (i.e., broad
scale declines across most sites in the North and East regions and
stability or increase in over half of the sites in the South; Table 3
and Fig. 2). For forest elephants, severe declines were registered at
most sites across the species range, but 3% of sites were estimated
to have increased. These results indicated that conservation
efforts are succeeding in some sites across regions of Africa. Such
heterogeneity offers opportunities to identify key factors related
to the efficacy of conservation efforts, that may ultimately protect
the viability of wild elephant populations. Our results highlight
strongholds for the species, including sites that have increased
while embedded in regions of decline (e.g., Pendjari National
Park in Benin is a rare example of an increasing forest elephant
trend). The consistency of our approach across sites makes these
comparisons valid. Such sites, where the associated populations
are believed to be demographically viable, may merit greater
attention and investment given their importance for the species.

Materials and Methods

Due to differences in resources for monitoring across sites and the development
of new techniques over decades of data collection, surveys varied widely in
respect to method, effort, and frequency. More specifically, the methodology
and temporal range of data differed between sites; and at any one site, surveys
may have used different methods, with different associated levels of observation
error, and with different survey area sizes that may or may not have included
the complete elephant population. We further lacked information on intrinsic
demographic rates of growth or carrying capacity, which change across the
continent due to environmental conditions. These limited and inconsistent data
constrained our analytical approach in three important ways. First, we modeled
elephant density rather than numbers since the survey area size was not constant
over time for most survey sites. Second, we were able to fit only the simplest
exponential population model: A logistic model of density-dependent growth
did not converge. Third, we lacked overlapping, comparative data across sites

that would allow us to calculate an overall measure of population change directly
from estimated site-specific trends.

The model assumed African elephant population dynamics were a function
of site-specific growth rates�i,t , which describe the rate of change in population
density at survey site i using a simple multiplicative relationship:

xi,t+1 = xi,t · �i,t , [1]

where xi,t is the density at time t and xi,t+1 is the density in the following
year (SI Appendix, Model Derivation). For an initial condition xi,0 at t = 0, the
population change per site from t = 0 to t = T is the product of each sequential
change:

Λi =
T−1∏
t=0

�i,t. [2]

In order to estimate a global, species-specific, or regional trend, we are required
to combine estimates of Λi from multiple populations (survey sites), each with
different data characteristics. A weighted average (e.g., refs. 35 and 36) or
summation (e.g., ref. 41), could be used. Weights could be constructed from
survey estimates of the population size, or the survey area sizes could be used to
convert the density trend in Eq. 2 to a numbers trend per site. However, neither
population size estimates nor survey area sizes were available for overlapping
years across all sites. An alternative approach was therefore required, and we
instead characterized the distribution of density trends across sites. Specifically,
we used an analytical derivation of the probability distribution ofΛi, basing our
inference directly on this distribution.

We show that it is possible to use the distribution of Λi to construct an index
of the average density trend, which can be used to infer conservation status
in the absence of comparable abundance data across sites. The contribution of
each site to the index does not need to be weighted but is determined only by
the information content of the data at that site. Furthermore, the distribution of
Λi can be obtained directly from a simple model of the population dynamics,
and uncertainty in the estimated component parameters retained in the final
output. In our description of the approach, we write the model in Eq. 1 as a
regression and show how the estimated coefficients can be used to define the
distribution of Λi.

Data. The primary source of African elephant population survey estimates is
the IUCN/Species Survival Commission (SSC) African Elephant Specialist Group
(AfESG) African Elephant Database (AED), a comprehensive repository of data
from survey reports and questionnaires from 37 African elephant range states
beginning in 1992 through 2016. Site-specific data on elephant numbers
predating the AED were compiled from original sources (primarily survey reports)
largely found in the IUCN/SSC AfESG African Elephant Library.

Data cleaning involved the following steps: 1) Exclude surveys with
incomplete information including missing site labels, number estimates, survey
area, year of survey, or country of survey site; 2) Unify site names so that surveys
from the same site are matched; 3) Delete duplicate survey records; 4) Exclude
survey records for which estimates were based on extrapolation to a wider
(unobserved) area than originally surveyed; 5) Exclude survey records recorded
as having low reliability in the AED; 6) Sum subsectioned survey records when
site surveys from the same survey effort were reported independently per site.

The data covered 475 survey sites with a total of 1,325 surveys between 1964
and 2016 (Table 1; 42). Based on coverage of the data, the models were initialized
in 1963 (i.e., t = 0 in this year) and terminated in 2016 (total elapsed time:
T = 53). Quantitative information on the observation error was not consistently
available across surveys and was therefore not used in the analysis.

Model Structure. We developed regression models with estimated coefficients
related directly to the rate of population change �i,t (Eq. 1). Population change
refers to the aggregated effects of birth, natural mortality, and anthropogenic
mortality, which are assumed multiplicative and density-independent. Density-
dependent models did not converge (SI Appendix, Model Selection) and were
arguably unnecessary given depleted and declining elephant populations over
much of the continent. We could however allow �i,t to change over time in a
density-independent manner. For the purposes of the modeling, each site was
assumed to be closed (i.e., no movement of individuals between sites).
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The following notation was adopted:

• i ∈ {1, 2, · · · , 475} and t ∈ {0, 1, · · · , 53} subscripts refer to the survey
site and time (in years) respectively;

• j refers to a partition that contains a nonoverlapping collection of sites.

We further define notation i|j as referring to a site nested within partition j. The
definition of the partition depends on the model run. For example, if the model
is partitioned into two elephant species, then j ∈ {1, 2} refers to the species,
and i|1 ∈ {1, 2, . . . , 150} and i|2 ∈ {151, 152, . . . , 475} refer to the sites
for forest and savannah elephant species respectively.

• yi|j,t is the observed elephant numbers per survey (the number of surveys and
the temporal range of the surveys per site are listed in SI Appendix, Table S2);

• Ai|j,t is the survey area size in square kilometers;
• xi|j,t is the estimated density (numbers per square kilometer);
• �i|j,t is the multiplicative rate of change in xi|j,t;
• �i|j,t is the model predicted elephant counts.

The process and observation models can be written in log–linear form for t > 0:

ln
(
xi|j,t

)
= ln

(
xi|j,0

)
+

t−1∑
z=0

ln
(
�i|j,z

)
, [3a]

ln
(
�i|j,t

)
= ln

(
xi|j,t

)
+  · ln

(
Ai|j,t

)
, [3b]

where z is an index referring to time z ∈ {0, · · · , t − 1}. The observation
model includes the stability parameter  > 0. Surveys are not random but
centered on known elephant populations. Assuming placement of the survey in
a region of highest known density, the count per unit area would be expected to
decrease as the survey area expands toward the spatial limit of the population.
This can be accommodated by an estimated value of 0 <  < 1, which would
stabilize the predicted numbers at high Ai|j,t . Inclusion of a partition-specific 
parameter did not yield any noticeable improvement in the fit to the data (SI
Appendix, Model Selection), and further exploratory runs with a fixed value of
 = 1 gave similar results to those reported here.

Two regression submodels were constructed, assuming that the rate �i|j,t
was either constant or linearly changing over time. Assuming a constant rate of
change:

ln
(
�i|j,t

)
= �j + �i|j, [4]

where estimated coefficients are the rate of change per partition �j, and the
nested random effect �i|j per survey site. Assuming a linearly time-dependent
rate of change gives a second model:

ln
(
�i|j,t

)
= �j + �i|j + t ·

(
�j + �i|j

)
, [5]

with additional coefficients �j and �i|j. These are referred to as the “constant”
and “linear” models respectively.

Model Fitting. The survey data yit ≥ 0 were counts, which we described using
a Negative Binomial probability mass function:

p
(
yi|j,t

)
∝

(
�

� + �i|j,t

)�
·

(
�i|j,t

� + �i|j,t

)yi|j,t
, [6]

parameterized using the overdispersion parameter � and the model predicted
expected value �i|j,t (Eq. 3b). The overdispersion is assumed to be constant
across all sites and estimated within the model. Inclusion of a partition-specific
� parameter did not yield any noticeable improvement in the fit to the data
(SI Appendix, Model Selection). The likelihood represents both process and
observation error, but since an observation error estimate was not consistently
available from the surveys, it was not explicitly included in the likelihood. We
note that this will have artificially increased our confidence in the estimated trend
at any given site but is unlikely to have biased the trend in any one direction.

Model fitting was conducted within a Bayesian framework using Markov
chain Monte Carlo (MCMC) sampling (43–46). The fixed effects �j were given a
weak normal prior centered on zero. The random effects terms�i|j were assumed
to follow an exponential scale-mixture normal distribution:

�i|j ∼ Normal
(

0, �2
�j

)
, [7a]

�2
�j ∼ Exponential (1) , [7b]

that is equivalent to a Laplace distribution for �i|j with location at zero and scale

parameter 1/
√

2 (47, 48), representing a prior assumption that �i|j = 0. The
number of ��j parameters is equal to the number of partitions. For example,
if j ∈ {1, 2} then we estimate parameters ��1 and ��2 . Similarly for ��j . The
same prior assumptions were used for �j and �i|j for the linear model, with ��j
hyperparameters.

Random effect terms will be distributed around each �j (and �j) coefficient,
and this hierarchical structure allowed trend information to be shared across
sites. This prevented the need for preselection of sites based on the perceived
information content of their data. For sites with little informative data, �i|j → 0
(and �i|j → 0) which allowed us to make inferences about sites with limited
surveys from the shared �j (and �j) terms.

The stability parameter was given a gamma prior, because it is bounded at
zero, with a prior value of one:

 ∼ Gamma(1, 1), [8a]

and the overdispersion a half-normal prior on the inverse of �:

�−1
∼ Normal+(0, 1), [8b]

which represents a prior assumption that there is only a small degree of
overdispersion (as �−1

→ 0+ the data more closely resemble a Poisson
distribution).

Trend Estimation. The overall trend per site is Λi|j (Eq. 2), and we describe
the distribution of this trend using estimated model parameters. We could then
derive an overall trend statistic as the central tendency of this distribution. To do
this, we write Λi|j in terms of the sequential, multiplicative growth rates �i|j,t ,
summed on the log-scale:

Λi|j = exp

T−1∑
t=0

ln
(
�i|j,t

) . [9]

Using the relationships in Eqs. 4 and 5, the priors in Eq. 7 allowed us to define
the distribution of ln

(
�i|j,t

)
for any collection of sites within partition j. For the

constant model:
ln
(
�i|j,t

)
∼ Normal

(
�j, �

2
�j

)
, [10]

and for the linear model:

ln
(
�i|j,t

)
∼ Normal

(
�j + t · �j, �

2
�j + t2 · �2

�j

)
, [11]

Since ln
(
�i|j,t

)
is a normally distributed random effect, the distribution of the

sum over time is also normally distributed. We use the notation:

T−1∑
t=0

ln
(
�i|j,t

)
∼ Normal

(
�j, �

2
j

)
, [12]

for site i in partition j. For the constant model:

�j = �j · T,

�2
j = �2

�j · T,

and for the linear model:
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�j = �j · T + �j · T · (T + 1)/2,

�2
j = �2

�j · T +

T−1∑
t=0

t2 · �2
�j .

If the sum of ln
(
�i|j,t

)
is normal, then Λi|j is log-normal, with an expected

change across sites within a partition equal to:

E[Λj] = exp
(
�j + �2

j /2
)

. [13]

From our model fit, we were therefore able to obtain a posterior distribution for
E[Λj], and use this to infer an overall population trend.

Data Partitions. Three partitionings of the data were used, each representing
finer disaggregations: 1) Global: all survey data considered in a single partition
assessing the continental scale trends of African elephants; 2) Species-specific:
survey data partitioned by species: L. cyclotis and L. africana; 3) Regional: survey
data partitioned by region: Forest (L. cyclotis), and East, North, South (L. africana),
based on the precedent of deriving regional estimates of population change
(9). The geographic distribution of forest elephant is largely within central
Africa, meaning that regional partitioning for this species was not considered
useful.

Model Fits and Diagnostics. All analyses and estimation procedures were
performed using Bayesian methods within R using the rstan package (43, 44).
For each model fit, four MCMC chains were initialized at the maximum a
posteriori estimate and run for 10,000 iterations, with every second sample
retained and the first half of each chain discarded, yielding a total of 10,000
retained samples. To check performance of the model, the convergence of all
parameter and derived value MCMC chains was verified using visual inspection,

consideration of the posterior effective sample size,Neff , and the potential scale
reduction factor, R̂ (26, 27,SIAppendix,Results). In addition, posterior prediction
of the data was performed to ensure that the model was capable of reproducing
the observations.

Reporting of Results. The model outputs posterior distributions for E[Λj] for
each partition. In characterizing the trend using this summary statistic, we
report the posterior mean, median, and 95% equal-tailed credible intervals. In
presenting the results we further make use of the discrete categories, analogous
to the IUCN Red List of Threatened Species categorization criteria: 0 to 20%; 20
to 50%; 50 to 80%; and >80%. Trends of >100% indicate population density
increase.

Data, Materials, and Software Availability. Anonymized survey abundance
estimates and model code have been deposited on Dryad (42, 46). Access to
the raw data requires permission from the IUCN/SSC African Elephant Specialist
Group (afesg@iucn.org), to which requests should be directed.
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