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Vocalizations often vary in structure within a species, from the
individual to population level. Vocal differences among social
groups and populations can provide insight into biological
processes such as vocal learning and evolutionary divergence,
with important conservation implications. As vocal learners
of conservation concern, intraspecific vocal variation is of
particular interest in elephants. We recorded calls from
individuals in multiple, wild elephant social groups in two
distinct Kenyan populations. We used machine learning to
investigate vocal differentiation among individual callers,
core groups, bond groups (collections of core groups) and
populations. We found clear evidence for vocal distinctiveness
at the individual and population level, and evidence for much
subtler vocal differences among social groups. Social group
membership was a better predictor of call similarity than
genetic relatedness, suggesting that subtle vocal differences
among social groups may be learned. Vocal divergence among
populations and social groups has conservation implications
for the effects of social disruption and translocation of
elephants.

1. Introduction
Many vocal animals exhibit intraspecific variation in the
properties of their vocalizations. Geographic variation in
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vocalizations occurs on a wide range of spatial scales and may be graded or discrete. The songs of
red-faced cisticolas (Cisticola erythrops) vary gradually across sub-Saharan Africa over more than 6500
km [1], while mourning warblers (Geothlypis philadelphia) have discrete, regionally specific dialects
spanning up to 2000 km [2]. At the other end of the geographical scale, little hermit hummingbirds
(Phaethornis longuemareus) exhibit multiple microgeographic dialects within a single lek that span just a
few tens of metres [3]. Geographic vocal variation can be adaptive; for example, by facilitating mating
with locally adapted individuals [4] or optimizing vocalizations for the sound propagation properties
and noise profile of the local habitat [5]. However, it can also be selectively neutral [6,7].

Animals may also exhibit vocal differences among social groups that overlap in home range but
are socially distinct from one another. Some cetaceans have group-specific repertoires of discrete
acoustic signals, in which some but not all call types are shared with other social groups [8–10]. More
commonly, vocal group signatures result from a single species-wide call type being slightly more
similar in structure among members of the same group [11–17].

A common function of vocal group signatures is to facilitate social recognition. While individual
recognition allows more fine-scale discrimination among conspecifics [18], group recognition may be
less cognitively demanding, as it requires learning fewer distinct signals. A shared signature of group
identity can act as a ‘password’, allowing animals to easily assess the group membership of others
without having to recognize them all individually [14,19,20].

Geographic vocal variation can occur regardless of whether calls are innate or learned. Differences
in body size or other morphological characteristics between populations can lead to geographic vocal
differences, as vocal parameters such as fundamental frequency, formants and maximum duration
are tied to vocal cord mass, vocal tract length and lung capacity, respectively [21]. Social learning
of vocalizations often results in distinct regional dialects even in the presence of substantial gene
flow [22]. Animals with some degree of behavioural plasticity in vocal production may adjust their
vocalizations to propagate more efficiently in the local habitat even if they do not socially learn their
calls, although learning ability seems to facilitate such acoustic adaptation [5,23,24]. Most documented
examples of vocal differences among sympatric social groups involve social learning [12,13,17,25],
although it is theoretically possible for vocal group signatures to be genetic.

Vocal learning can be broadly divided into usage learning and production learning, both of which
can lead to vocal divergence among groups [13,26,27]. Vocal usage learning involves either learning to
modify the context in which existing calls are produced or learning to modify the temporal patterning
of calls, while vocal production learning involves modifying the acoustic structure of vocalizations
based on auditory experience [27]. Vocal production learning is rarer than usage learning and exists
on a spectrum of complexity [27]. Some animals, such as meerkats (Suricata suricatta) [28], domestic
goats (Capra hircus) [16] and non-human primates [29], can learn slight modifications to species-typical
vocalizations that are otherwise innate. Other vocal learners, such as swamp sparrows (Melospiza
georgiana), require auditory input to develop normal songs but only learn songs that are typical of
their species [30], while still others, such as superb lyrebirds (Menura novaehollandiae), can mimic
heterospecific sounds [31].

Intraspecific vocal variation is of interest in elephants for both practical and theoretical reasons.
As managers frequently translocate elephants between populations, understanding how elephant
populations and social groups differ in their vocal behaviour could be valuable for their conservation
[32]. Moreover, studies on captive individuals have shown that elephants are among the few mammals
capable of mimicking heterospecific sounds [33,34], but it is unknown how vocal production learning
manifests in wild elephants. One possibility is that elephants evolved vocal learning to facilitate social
recognition through the development of group signatures, which could be particularly beneficial for
elephants given their large and multi-tiered social networks (figure 1).

In African savannah elephants (Loxodonta africana), mothers and their dependent offspring form the
most fundamental unit of social organization, multiple (usually related) mother–offspring units form a
‘core group’ led by the oldest adult female, multiple (usually related) core groups form a ‘bond group’,
and multiple bond groups form a ‘clan’ [35–38]. Elephants vocally discriminate among different tiers of
social affiliates, and if vocal group signatures exist this might facilitate recognition, especially of distant
affiliates [39].

Animals with multi-tiered social structures may exhibit group signatures at one or more levels of
social organization. In killer whales (Orcinus orca) and sperm whales (Physeter macrocephalus), different
tiers of social organization can be distinguished by the number of call types they have in common,
with individuals from the same core unit sharing the most call types [8,40]. In greater spear-nosed
bats (Phyllostomus hastatus), calls cluster by social group within a cave, and all groups from the

2
royalsocietypublishing.org/journal/rsos 

R. Soc. Open Sci. 11: 241264

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

14
 F

eb
ru

ar
y 

20
25

 



same cave cluster more closely with one another than with calls from other caves [14]. By contrast,
geladas (Theropithecus gelada) exhibit call convergence at the level of the band (the second tier of social
organization) but not at the level of smaller social units within a band [17]. Most elephant vocalizations
are low-frequency, harmonic calls known as rumbles [41]. Rumbles are individually specific [42–46],
but no prior study has investigated whether rumbles also exhibit group-specific acoustic signatures at
any level of social affiliation or intraspecific geographic variation.

We tested the hypotheses that the acoustic structure of rumbles produced by female African
savannah elephants differs between populations, bond groups, core groups and individuals. We also
hypothesized that vocal differences among social groups are learned rather than genetically deter-
mined. The predictions associated with these hypotheses are summarized in table 1.

2. Methods
2.1. Data collection
We recorded rumbles from wild adult female elephants in Amboseli National Park, Kenya (‘Ambo-
seli’) in 1986–1990 and 1997–2006 and in Samburu and Buffalo Springs National Reserves, Kenya
(‘Samburu’) in November 2019–March 2020 and June 2021–April 2022. These two populations are 390
km apart with no current gene flow between them due to intervening urban development [47]. Both
populations have been continuously monitored for decades and all individuals can be individually
identified by external ear morphology [35,36]. We focused on adult females (10+ years of age) to ensure
that any vocal differences between populations or social groups were not an artefact of age or sex. Our
final dataset included calls from 21 adult females in Amboseli (mean ± s.d. age = 26.2 ± 12.9 years) and
81 adult females in Samburu (mean ± s.d. age = 25.6 ± 11.2 years). The field recording methods for this
dataset [48] have been previously published [49].

We recorded the identity of the caller and the behavioural context of each call. The caller was
identified using behavioural and contextual cues, such as an open mouth, flapping ears or being the
only individual who was not a young calf in the immediate vicinity (calf calls are easily distinguished
from adult/subadult calls due to their higher frequency and shorter duration) [41]. We only included in
the analysis calls for which we were able to identify the caller with certainty. Behavioural context was
originally scored using slightly different ethograms in Amboseli [41] and Samburu [49]. To facilitate
comparison between these two datasets, we concatenated behavioural context into nine categories
shared across both populations (electronic supplementary material, table S1).

2.2. Definition of social groups
We determined the group membership of the elephants in Samburu following a previously published
protocol [35]. In brief, we calculated simple ratio association indices [50] between all adult females
in the population using observational data collected between January 2019 and April 2022, excluding
individuals that were seen less than 20 times during this period. We performed a Ward’s hierarchical
cluster analysis on association indices, plotted the cumulative number of bifurcations as a function of
bifurcation distance, and identified the most significant knot by visual inspection of the plot (sensu

Clan

Bond group

Bond group

Bond group

Core group

Core group

Core group

Core group

Core group

Core group

Figure 1. Illustration of hierarchically nested social organization of female African savannah elephants. Wittemyer et al. [35] reported
a mean of 7.46 individuals per core group, 2.0 core groups per bond group and 3.25 bond groups per clan in Samburu.
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[35]). We cut the dendrogram at the height corresponding to this knot and designated all clusters
below this height as separate core groups. To identify bond groups, we repeated the procedure using
only the matriarch (oldest female) of each core group. We did not include Amboseli data in the
analysis of core groups and bond groups because we did not have comparable association data for
Amboseli, and because 92% of our Amboseli recordings came from individuals belonging to the same
(subjectively defined) core group. Data analysis was conducted using R v. 4.2.2 [51].

2.3. Call measurement
We measured 94 acoustic features on each call describing the distribution of energy across time
and frequency in the mel spectrogram (electronic supplementary material, table S2, Supplemental
Methods). A mel spectrogram is similar to a traditional spectrogram (raster plot with time on the
x-axis, frequency on the y-axis, and amplitude indicated by pixel darkness) but with frequency
transformed to the logarithmic mel scale [52]. While the mel scale was designed to approximate
human hearing sensitivity, most other mammals, including elephants, perceive frequency on a similar
logarithmic scale [53].

While the measurements we took from the mel spectrogram capture more of the variation in the
calls than traditional measurements such as fundamental frequency and formants, they also capture
background noise and thus may be more susceptible to influence from the recording equipment.
To ensure that differences between Amboseli and Samburu could not be attributed to the different
recording gear used in each population, we also traced the second harmonic (f1) contour of each call,
which is highly robust to recording equipment differences [54]. We calculated nine summary statistics
of the f1 contour (electronic supplementary material, table S2).

2.4. Individual, social unit and population assignment accuracy
To test the hypothesis that Amboseli and Samburu elephants exhibit population-level acoustic differen-
ces, we ran a random forest (500 trees, six variables/node, 60% of observations/tree, minimum node
size = 1, no maximum tree depth) to predict population as a function of the mel spectrogram acoustic

Table 1. Hypotheses and predictions tested in this study. The majority classifier is a model that always guesses the most numerous
category in the training data, and is a more conservative baseline than the weighted expectation (chance).

hypotheses predictions

1. Rumbles differ between allopatric populations 1a. Calls can be assigned to population with better accuracy than
majority classifier

1b. Calls from the same population are more similar on average
than calls from different populations

2. Rumbles exhibit acoustic signatures at the bond group level 2a. Calls can be assigned to bond group with better accuracy
than majority classifier

2b. Calls from different core groups in the same bond group
are more similar on average than calls from different bond
groups

3. Rumbles exhibit acoustic signatures at the core group level,
which are stronger than the acoustic signatures at the bond
group level

3a. Calls can be assigned to core group with better accuracy than
majority classifier

3b. Calls from same core group are more similar on average than
calls from different core groups in the same bond group or
from different bond groups

4. Rumbles differ among individual callers 4a. Calls can be assigned to individual callers with better
accuracy than majority classifier

5. Vocal differences among social groups are learned, not genetic 5a. Social group (core or bond group) membership is a
significant predictor of call similarity but genetic relatedness
is not
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features. A random forest is a machine learning model comprising many decision trees, each using a
randomly selected fraction of the data [55]. This analysis included 938 calls from 81 individuals in
Samburu, and 414 calls from 21 individuals in Amboseli. As random forests are biased towards more
numerous classes [56], we balanced the dataset by randomly subsampling the Samburu observations
so there were an equal number of observations in each class. To ensure that the model could only
predict population using cues that generalized across callers, we randomly selected 20% of the callers
with at least five calls each from each population and allocated all calls from these callers to the test set,
with the remaining calls allocated to the training set [57]. We calculated the proportion of observations
in the test set that were classified correctly (classification accuracy) and ran a one-tailed exact binomial
test comparing the classification accuracy with the proportion that would have been classified accu-
rately if the model always guessed the most common group in the training set (‘majority’ or ‘zero rate’
classifier). The majority classifier is a standard baseline model used in machine learning [58]. When
there are the same number of observations in each class, the majority classifier is mathematically
equivalent to the weighted expectation (guessing each class with a probability equal to the proportion
of the data comprised by that class). However, when the data are imbalanced, the majority classifier
always outperforms the weighted expectation. We repeated the above process
10 000 times and calculated the median p-value across all runs. The number of calls allocated to the test
set varied across runs because different callers produced different numbers of calls. The mean ± s.d.
proportion of the calls allocated to the test set across 10 000 runs was 0.16 ± 0.05. Note that although the
full dataset was balanced by subsampling an equal number of calls from each population, the data
were not perfectly balanced within the training and test sets, because the number of calls from each
population allocated to the test set depended on the number of calls per caller. Moreover, the majority
population in the training set was not always the majority population in the test set. Thus, the majority
classifier accuracy could be greater or less than 50%.

To determine if vocal differences between the two populations could be an artefact of the different
recording equipment used in each population, we ran the same model using the f1 contour measure-
ments instead of the mel spectrogram measurements. We also ran a logistic regression model with
population as the response variable and the f1 contour measurements and caller age as the regressors,
to determine which acoustic features had a significant relationship to population.

To test the hypotheses that elephants exhibit vocal signatures of group identity at the bond group
or core group level, we ran two additional random forest models (same hyperparameters) to predict
bond group and core group, respectively, as a function of the mel spectrogram acoustic features, using
only data from Samburu. To ensure that the bond group model could only use acoustic features that
generalized across the entire bond group, rather than features specific to core groups, to predict bond
group, we restricted the dataset to bond groups that contained at least two core groups with at least
five calls each in our dataset (six bond groups, 931 calls) [57]. For each iteration of the model, we
randomly selected one core group from each bond group and allocated all calls from those core groups
to the test set. To ensure that the core group model could only use acoustic features that generalized
across the entire core group, rather than features specific to individual callers, to predict core group,
we restricted the dataset to core groups that contained at least two individuals with at least five calls
each in our dataset (seven core groups, 794 calls) [57]. For each iteration of the model, we randomly
selected 20% of the callers with at least five calls each from each core group and allocated all calls
from those individuals to the test set. The data were severely imbalanced across bond groups and core
groups, but we were unable to balance it by subsampling the more numerous classes because doing so
would have reduced the sample size excessively. We ran 10 000 iterations for each model, calculating
the classification accuracy and p-value for each run as before. The mean ± s.d. proportion of the calls
allocated to the test set was 0.32 ± 0.17 for the bond group model and 0.23 ± 0.08 for the core group
model.

To test the hypothesis that elephant rumbles are individually specific, we ran a fifth random forest
(same hyperparameters) to predict individual caller identity as a function of the mel spectrogram
acoustic features. As calls produced by the same caller on the same date might exhibit similar features
due to temporary circumstances such as the caller’s internal state, behavioural context and ambient
conditions, we randomly selected one date for each caller and held out all calls from these caller
dates as the test set [49,57]. We used callers from both populations for this analysis, but only included
callers that produced at least three calls on at least two different dates each (427 calls from 15 callers
in Samburu, 218 calls from nine callers in Amboseli). We calculated the classification accuracy and
p-value for each of 10 000 iterations as before. The mean ± s.d. proportion of calls allocated to the test
set was 0.20 ± 0.02.
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2.5. Assessment of call similarity
Elephant rumbles vary with the behavioural context and the individual identity and age of the caller
[41,59,60]. To determine if there were acoustic differences among populations, bond groups or core
groups that could not be explained by behavioural context, caller identity or caller age, we calculated
random forest proximity scores between each possible pair of calls. The random forest proximity score
for a given pair of calls was the proportion of trees for which both calls were classified in the same
terminal node, adjusted for the size of the node, and represented a metric of call similarity in terms
of the acoustic features most relevant to predicting the response variable [61]. We calculated proximity
scores from four different random forests (population with mel spectrogram features, population with
f1 contour features, bond group and core group), using the same hyperparameters and subsets of the
data as before except that we increased the number of trees to 8000 and did not balance the data by
subsampling or hold out any observations as a test set (population models: all observations, n = 1352;
bond group model: all bond groups in Samburu containing at least two core groups with at least five
calls each, n = 931; core group model: all core groups in Samburu containing at least two individuals
with at least five calls each, n = 794).

For each set of proximity scores, we ran a generalized linear mixed model with a gamma error
distribution and a log link function. In each model, pairwise call proximity score was the response
variable and pair ID (unique identifier for a given pair of callers) was a random effect. Fixed effects
were ‘pair class’ (whether the two calls in a given pair came from the same population, bond group or
core group, depending on the model) and the scaled and centred absolute value of the age difference
between the two callers. For the population models, the ‘pair class’ variable was binary: a pair of calls
could either be from the same population or not. For the bond group and core group models, the ‘pair
class’ variable had three possible states: same core group, different core groups within the same bond
group or different bond groups within the Samburu population. To ensure that differences between
populations or social groups were not an artefact of individual identity or behavioural context, we only
included pairs of calls with the same behavioural context and different callers. We also only included
calls for which we were certain of the behavioural context (see electronic supplementary material,
Supplemental Methods). This resulted in a sample size of 149 640 call pairs for the two population
models, 97 586 call pairs for the bond group model and 72 437 call pairs for the core group model.
As proximity scores could be 0, we added 0.00001 to all proximity scores so all the values would
be positive. For the bond group and core group models, we used the R package ‘emmeans’ [62] to
examine the pairwise contrasts for each level of the ‘pair class’ variable.

To assess whether vocal similarity between individuals was better explained by social affiliation or
genetic relatedness, we ran two additional gamma regressions on call pairs, modelling call proximity
score as a function of ‘binary pair class’ (see below), caller age difference and caller genetic relatedness.
One gamma model used proximity scores extracted from the random forest trained to predict core
groups and the other used proximity scores extracted from the random forest trained to predict bond
groups. These two sets of proximity scores represented the pairwise similarity between calls in terms of
the features most relevant to predicting core group membership or bond group membership, respec-
tively. For the model using proximity scores extracted from the bond group random forest, binary pair
class indicated whether the two calls in a pair were from the same bond group. For the model using
proximity scores extracted from the core group random forest, binary pair class indicated whether the
two calls in a pair were from the same core group. These gamma models could only be run on the
subset of callers for which we had genetic relatedness data (13 individuals for the bond group model,
eight for the core group model). Genetic relatedness was calculated in a previously published study
using 20 microsatellite loci extracted from tissue or dung samples collected before 2006 [37]. Due to
social disruption caused by poaching, many core groups and bond groups in the Samburu population
now include unrelated individuals, which made it possible to independently assess the effects of social
affiliation and relatedness on call similarity [37].

All statistical analyses were performed in R v. 4.2.2 [51] and 0.05 was used as the significance
threshold for all tests.
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3. Results
3.1. Vocal differences between allopatric populations
The random forest model trained to predict population from mel spectrogram acoustic features was
significantly more accurate than the majority classifier that always guessed the population with the
most calls in the training set (median observed classification accuracy = 0.79, median majority classifier
accuracy = 0.39, median p < 0.0001) (figure 2). Similarly, the random forest model trained to predict
population from f1 contour features, which describe less of the variation in the call but are robust
to influences of the recording equipment, was significantly more accurate than the majority classifier
(median observed classification accuracy = 0.65, median majority classifier accuracy = 0.39, median p <
0.0001) (figure 2). Three parameters of the f1 contour had a significant relationship with population in
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Figure 2. Evidence for acoustic differences between Amboseli and Samburu populations. Top row: models using acoustic features
derived from mel spectrogram. Bottom row: models using acoustic features derived from second harmonic contour. Histograms
represent distribution of classification accuracies of 10 000 random forest models trained to predict population from the acoustic
features. Positive values (to the right of the red line) indicate that the random forest outperformed the majority classifier (binomial
exact tests; median p < 0.0001 for both models). Boxplots represent acoustic similarity of calls within versus between populations
(gamma regression; p < 0.0001 for both models). Acoustic similarity is represented by call proximity scores extracted from the random
forest. The log of the proximity scores is plotted on the y-axis to facilitate visualization of the data (less negative values = greater call
similarity). Centre lines = medians, box edges = interquartile ranges, whiskers = 1.5 × interquartile range.

Table 2. Results of logistic regression modelling population as a function of acoustic features derived from the second harmonic
contour (Hz) and caller age (days). χ2 statistics and p-values are derived from analysis of deviance on the model. Significant p-values in
bold.

regressor coefficient χ2 statistic p‐value

mean of second harmonic −0.664 4.96 0.026

s.d. of second harmonic 1.16 8.31 0.004

skew of second harmonic −0.0335 0.0628 0.802

kurtosis of second harmonic 0.0440 0.688 0.407

10th percentile of second harmonic −0.000548 0.0000 0.997

90th percentile of second harmonic 0.0101 0.0027 0.959

frequency at 25% of call duration 0.0617 0.513 0.474

frequency at 50% of call duration 0.0758 0.675 0.411

frequency at 75% of call duration 0.358 16.9 <0.0001

caller age −0.0000692 19.6 <0.0001
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a logistic regression model after controlling for caller age: mean of the second harmonic (χ2 = 5.0, p =
0.026), s.d. of the second harmonic (χ2 = 8.3, p = 0.004), and value of the second harmonic at 75% of call
duration (χ2 = 16.9, p < 0.0001). All three values were higher in Samburu than in Amboseli on average
(figure 3, table 2).

Calls from different individuals within the same population were significantly more similar than
calls from different populations after controlling for behavioural context, individual caller identity
and the age difference between the callers (gamma regression; proximity scores calculated from mel
spectrogram features: χ2 = 493.0, p < 0.0001; proximity scores calculated from f1 contour features:
χ2 = 41.3, p < 0.0001) (figure 2, table 3). This indicates that the vocal divergence between Samburu
and Amboseli was not merely an artefact of differences in the age structure or prevalence of certain
behavioural contexts in the two populations, but rather reflects a population-specific vocal difference.
Call similarity also decreased as the age difference between the callers increased (gamma regression;
proximity scores calculated from mel spectrogram features: χ2 = 35.2, p < 0.0001; proximity scores
calculated from f1 contour features: χ2 = 80.8, p < 0.0001) (table 3).

3.2. Vocal differences among sympatric social groups
The random forest trained to predict bond group in Samburu from mel spectral features correctly
predicted bond group for 10% of calls on average, which was significantly more accurate than the
majority classifier (median observed classification accuracy = 0.10, median majority classifier accuracy
= 0.05, median p = 0.001) (figure 4). The random forest trained to predict core group in Samburu
from mel spectral features correctly predicted core group for 19% of calls on average, which was no
better than the majority classifier (median observed classification accuracy = 0.19, median majority
classifier accuracy = 0.19, median p = 0.70) (figure 4). Analysis of call proximity scores indicated that
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Figure 3. Population differences in the second harmonic (f1) contour. Boxplots represent population differences in the three features
of the second harmonic that differed between Amboseli and Samburu (logistic regression; mean of second harmonic: p = 0.026; s.d.
of second harmonic: p = 0.004; frequency of second harmonic at 75% of call duration: p < 0.0001). Bottom right: spectrograms of
rumbles from the same behavioural context (contact calling) made by a 17-year-old female in each population (2 kHz sampling rate,
Hanning window, 800 samples/window, 90% overlap). Red lines: mean frequency of second harmonic; red Xs: frequency of second
harmonic at 75% of call duration.
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calls recorded from the same core group were more similar than calls recorded from different core
groups in the same bond group or calls recorded from different bond groups, suggesting some vocal
convergence at the core group level (tables 3 and 4). By contrast, calls from different core groups in
the same bond group were no more similar than calls from different bond groups, suggesting a lack of
vocal convergence at the bond group level (tables 3 and 4). In both the bond group model and the core
group model, call similarity decreased as caller age difference increased (table 3).

3.3. Vocal differences among individual callers
The random forest trained to predict individual caller ID from mel spectral features performed
significantly better than the majority classifier (median classification accuracy = 0.29, median majority
classifier accuracy = 0.03, median p < 0.0001) (table 3, electronic supplementary material, figure S1).

3.4. Social versus genetic influences on call similarity
Social group membership was a better predictor of call similarity than genetic relatedness. For the
proximity scores extracted from the random forest trained to predict core group, belonging to the same

Table 3. Results of gamma regressions with call proximity score as the response variable. Rows are separate models and columns are
regressors. Values in each cell include the coefficient, χ2 statistic, and p-value for fixed effects (χ2 and p based on analysis of deviance)
and the s.d. for random effects. Caller age was scaled to make it more comparable in range to other regressors. Pair ID represented a
unique pair of callers.

model # RF used to
generate proximity
scores

levels of pair
class (reference
level bold)

pair class caller age
(scaled)

genetic
relatedness

pair ID
(random
effect)

1 population ~ mel
spectral features

same versus
different
population

Coef = 0.518; χ2

= 493.0; p <
0.0001

Coef = − 0.059;
χ2 = 35.2; p
< 0.0001

NA 0.535

2 population ~ F1
contour features

same versus
different
population

Coef = 0.381; χ2

= 41.3; p <
0.0001

Coef = −0.233;
χ2 = 80.8; p
< 0.0001

NA 5.074

3 bond group ~ mel
spectral features

same core group
versus same
bond group
versus
different
bond groups

Coef (same core
group) =
0.181; Coef
(same bond
group) =
0.049; χ2 =
13.2; p =
0.001

Coef = −0.111;
χ2 = 68.0; p
< 0.0001

NA 0.658

4 core group ~ mel
spectral features

same core group
versus same
bond group
versus
different
bond groups

Coef (same core
group) =
0.228; Coef
(same bond
group) =
−0.061; χ2 =
26.5; p <
0.0001

Coef = −0.154;
χ2 = 82.8; p
< 0.0001

NA 0.543

5 bond group ~ mel
spectral features

same versus
different bond
group

Coef = 0.309; χ2

= 3.54; p =
0.060

Coef = −0.048;
χ2 = 2.13; p
= 0.144

Coef = 0.146; χ2

= 0.133; p =
0.715

0.508

6 core group ~ mel
spectral features

same versus
different core
group

Coef = 0.374; χ2

= 5.85; p =
0.016

Coef = 0.013; χ2

= 0.181; p =
0.670

Coef = 0.382; χ2

= 1.49; p =
0.222

0.375
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core group was a significant predictor of call proximity (gamma regression, χ2 = 5.9, p = 0.016), but
genetic relatedness was not (gamma regression, χ2 = 1.5, p = 0.222) (electronic supplementary material,
figure S2, table 3). For the proximity scores extracted from the random forest trained to predict bond
group, belonging to the same bond group was a marginally non-significant predictor of call similarity
(gamma regression, χ2 = 3.5, p = 0.060) and genetic relatedness was not significant (gamma regression,
χ2 = 0.133, p = 0.715) (electronic supplementary material, figure S2, table 3).

4. Discussion
The vocal flexibility of elephants is notable, but few studies have assessed geographic and social
group variation in wild elephant calls. Our results provide evidence that elephant rumbles differ in
structure between allopatric populations and suggest at least some vocal divergence among sympatric
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Figure 4. Limited evidence for vocal differences among sympatric social groups. Histograms represent distribution of classification
accuracies of 10 000 random forest models trained to predict bond group or core group from the acoustic features. Positive values (to
the right of the red line) indicate that the random forest outperformed the majority classifier (binomial exact tests; bond group model:
median p = 0.001; core group model: median p = 0.70). Boxplots represent acoustic similarity of calls in same core group versus same
bond group versus different bond groups (gamma regression, post hoc contrasts: *p < 0.01, **p < 0.001, ***p < 0.0001). Acoustic
similarity is represented by call proximity scores extracted from the random forest. The log of the proximity scores is plotted on the
y-axis to facilitate visualization of the data (less negative values = greater call similarity). Centre lines = medians, box edges =
interquartile ranges, whiskers = 1.5 ∗ interquartile range.

Table 4. Post hoc contrasts indicating the statistical significance of acoustic differences between core groups and bond groups. Both
models in this table were of the form call proximity score (similarity score between a pair of calls) ~ pair class + scaled caller age
difference + (1|pair ID), where pair class was a three-way categorical variable indicating whether the two calls in question were
recorded from the same core group, different core groups in the same bond group or different bond groups. The models differed in
which random forest (RF) model was used to generate the call proximity scores. In model 3, the proximity scores represented the
pairwise similarity of calls in terms of the acoustic features most relevant to predicting bond group membership, while in model 4 the
proximity scores represented the pairwise similarity of calls in terms of the acoustic features most relevant to predicting core group
membership.

model # RF used to generate
proximity scores

same core group versus
different core groups in
same bond group

same core group versus
different bond groups

different core groups in
same bond group versus
different bond groups

3 bond group ~ mel
spectral features

p = 0.144 p = 0.001 p = 0.627

4 core group ~ mel
spectral features

p = 0.0001 p < 0.0001 p = 0.536
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core groups. Our results also indicate that to the extent that elephants exhibit vocal differences among
social groups, these differences are probably due to social factors rather than genetically determined,
as group membership, but not genetic relatedness, was a significant predictor of call similarity.

As 92% of the calls we recorded in Amboseli came from a single social unit, the effects of population
and social group were somewhat confounded. However, random forest models were able to achieve
much higher discriminability between the Amboseli and Samburu populations than among social
groups within Samburu. This suggests that the two populations are more vocally divergent than social
groups within a single population. Previous work has shown that elephant populations differ in the
most common order of call combinations [63], and our present findings add to this by showing that
populations also differ in the fine acoustic structure of rumbles.

There are several possible explanations for the difference in call structure between Amboseli and
Samburu. Cultural evolution is a common driver of vocal differences between animal populations. For
example, white-throated sparrows (Zonotrichia albicollis) and yellow-naped amazon parrots (Amazona
auropalliata) exhibit regional dialects that probably stem partially from copying errors during vocal
production learning [7,64]. Chimpanzees exhibit population differences in the order of call combina-
tions that probably result from usage learning [26]. In elephants, vocal production learning seems more
likely than usage learning to explain the population differences we observed, given that they were
structural differences in a single call type. However, we cannot definitively rule out the possibility
that Amboseli and Samburu elephants share the same repertoire of rumble subtypes but differ in the
contexts in which each subtype is used, thus leading to an average difference in the fundamental
frequency of rumbles recorded from the two populations.

Amboseli and Samburu exhibit significant genetic divergence in mitochondrial DNA (FST = 0.423,
p < 0.0001) and to a lesser extent nuclear microsatellites (FST = 0.02, p < 0.05), so genetics may play
a role as well [65]. Moreover, if Samburu elephants were more stressed than Amboseli elephants on
average during the periods in which we recorded them, this might explain why Samburu rumbles
were higher in pitch, as stress is correlated with elevated fundamental frequency in elephant rumbles
[66]. Acoustic adaptation also cannot be definitively ruled out. If Samburu has more low-frequency
noise for some reason, the Samburu elephants might have shifted the frequency of their rumbles
upwards to compensate, as has been documented in many other species [67]. However, there is no
obvious reason to expect differences in the acoustic environments of Samburu and Amboseli given that
both are protected areas with similar habitat types surrounded by relatively low-density pastoralist
communities [47].

One explanation that probably can be excluded is body size. There is little difference in growth
asymptotes among female elephants in these two populations [68], and the vocal differences persisted
when controlling for age. To the extent that there is any difference in body size between the popula-
tions, Samburu elephants are slightly taller on average [68], which if anything would be expected to
result in lower fundamental frequencies [21]. However, we observed the opposite.

Elephants are often translocated between populations to facilitate gene flow, reduce ecological
damage caused by local overcrowding or mitigate human–elephant conflict [32,69]. Our finding that
elephant populations less than 400 km apart exhibit significant differences in the structure of their
rumble vocalizations could thus have important implications for elephant conservation, especially if
the differences are found to result from cultural or genetic divergence, rather than acute responses
to local environmental conditions. A prior study found that elephants reacted to seismically trans-
mitted playback of alarm rumbles recorded in their own population but ignored alarm rumbles
from a different population, although it is unclear if this was due to failure to recognize alarm
calls from another population, increased responsiveness to familiar callers or differences between
the stimuli unrelated to population of origin [70]. Further study is warranted to determine whether
vocal differences between elephant populations impede communication or social integration. If so,
translocation efforts should attempt to quantify and account for behavioural compatibility between
populations when deciding where to move individuals, to the extent that it is feasible to do so.

We found evidence for limited vocal differences among sympatric social groups. Analysis of call
proximity scores indicated statistically significant vocal convergence among members of the same core
group but found no evidence for vocal convergence among group members at the bond group level.
Our random forest models correctly predicted the core group for 19% of calls and correctly predicted
the bond group for 10% of calls, but only the bond group model was statistically significantly better
than the majority classifier. This is probably because the training data were more unbalanced for the
core group model on average, so the majority classifier was more accurate for this model, thus raising
the threshold for a statistically significant improvement over the majority classifier.
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Overall, our results suggest that elephants exhibit greater vocal convergence at the core group
level than at the bond group level. This is similar to some cetaceans and bats, in which the
greatest vocal convergence takes place at the closest tier of social affiliation [8,14,40]. However, it
contrasts with geladas, in which vocal convergence takes place at the band level, a higher tier of
social organization [17]. In geladas, bands typically forage and sleep together, and the function
of call convergence at the band level is hypothesized to be maintaining social cohesion among
less closely knit social affiliates who must coordinate their behaviour on a daily basis [17]. By
contrast, in elephants, bond group members from different core groups are more often separate
than together, so there is less opportunity and potentially less need to develop vocal convergence
at the bond group level [35].

The low accuracy of the random forest models in predicting social group membership from the
acoustic structure of rumbles suggests that while detectable vocal differences among social groups
do exist (at least at the core group level), they probably have limited potential for facilitating social
recognition. Vocal convergence among core group members in elephants may not have an adaptive
function; for example, it could be a selectively neutral by-product of vocal learning that evolved
for some other purpose. Meerkats have group signatures in their close calls but fail to discriminate
them, indicating that vocal differences among social groups can develop even if they do not facilitate
recognition [28]. Previous work has shown that elephants can discriminate between the calls of close
social affiliates (core/bond group members), distant social affiliates (clan members) and non-affiliates
[39]. If elephants do not rely on group signatures to make this discrimination, that means they can
individually recognize the calls of at least 100 other elephants on average, including individuals with
whom they have limited interaction, suggesting that they possess exceptional social memory [39].

The vocal differences we observed among elephant social groups and populations reflected minor
variations in the fine structure of a single shared call type. This is more similar to the subtle group
signatures found in some bats [13,71], ungulates [15,16], meerkats [28] and non-human primates [72]
than to the dialects of some cetaceans and birds, where individuals from different social groups or
geographical areas use categorically distinct repertoires of call/song types [2,7,8,40]. While we did not
include call types other than rumbles in this study, rumbles comprise the vast majority of elephant
vocalizations [41], and we have not noticed any differences among social groups or populations in the
total repertoire of basic call types.

It is sometimes difficult to determine if subtle modifications to species-specific call types involve
vocal production learning. For example, one study found that translocated captive chimpanzees (Pan
troglodytes) slightly modified their food calls to be more like those of their new group members [73],
but this may simply reflect changes in arousal [74]. We think it is unlikely that the vocal differences
we observed among sympatric elephant core groups can be explained by group differences in arousal
or other physiological states, as these groups are all subject to similar environmental stressors and we
controlled for behavioural context in our analysis of call proximity scores, but we cannot conclusively
rule it out.

Learning slight modifications to existing call types seems to require less neurological specialization
than learning entirely new call types, which explains why many species traditionally considered
non-vocal production learners, such as non-human primates, are capable of acquiring vocal group
signatures [75]. Yet unlike these species, some captive elephants have displayed a remarkable ability to
mimic novel heterospecific sounds, far beyond what is necessary to develop the subtle vocal conver-
gence we observed in this study [33,34]. Similar to humans, who exhibit both subtle vocal convergence
among social affiliates and more sophisticated forms of vocal production learning [72], it may be
that wild elephants use vocal learning in multiple ways. The recent discovery that elephants address
one another with name-like calls suggests another possible function for vocal production learning in
elephants [49].

Our study replicates previous findings that rumbles are individually distinct [42–46] and that
rumble structure is correlated with caller age [59]. However, our random forest model predicting
individual caller identity from call structure only achieved 29% classification accuracy on average, in
contrast to previous studies on captive elephants that achieved 55–60% accuracy using discriminant
function analysis [42,45] and 82.5% accuracy using hidden Markov models [43]. This difference in
performance may be an artefact of the number of individual callers included in each dataset (24 for
our study versus 6 or 13 for previous studies). It is also possible that rumbles produced under natural
conditions are more variable and therefore more difficult to assign to individual callers than rumbles
produced in captivity, or that our field recordings were noisier and more difficult to classify than
recordings made in captivity.
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This study is among the first to investigate possible consequences of vocal learning in wild
elephants and adds to a growing body of literature on vocal variation and plasticity in mammals
[75,76]. Interspecific variation in elephant calls is well-documented [63,77,78], and one study descri-
bed intraspecific variation in the syntax of elephant call combinations [63]. Geographic variation in
vocal structure has also been documented for elephants’ closest living relatives: sirenians and hyraxes
[79,80]. However, prior to the present study, intraspecific variation in the structure of a single call type
was largely unexplored in elephants. Longitudinal studies on translocated individuals and individuals
who change groups within a population due to poaching or other social disruption could help clarify
the role of vocal learning in wild elephant communication. Playback experiments could determine if
elephant calls differ in function as well as form across populations.
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